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Abstract—Software change recommendation seeks to suggest
artifacts (e.g., files or methods) that are related to changes made
by a developer, and thus identifies possible omissions or next
steps. While one obvious challenge for recommender systems is to
produce accurate recommendations, a complimentary challenge
is to rank recommendations based on their relevance. In this
paper, we address this challenge for recommendation systems
that are based on evolutionary coupling. Such systems use
targeted association-rule mining to identify relevant patterns in
a software system’s change history. Traditionally, this process
involves ranking artifacts using interestingness measures such as
confidence and support. However, these measures often fall short
when used to assess recommendation relevance.

We propose the use of random forest classification models to
assess recommendation relevance. This approach improves on
past use of various interestingness measures by learning from
previous change recommendations. We empirically evaluate our
approach on fourteen open source systems and two systems from
our industry partners. Furthermore, we consider complimenting
two mining algorithms: CO-CHANGE and TARMAQ. The results
find that random forest classification significantly outperforms
previous approaches, receives lower Brier scores, and has su-
perior trade-off between precision and recall. The results are
consistent across software system and mining algorithm.

Index Terms—recommendation confidence, evolutionary cou-
pling, targeted association rule mining, random forests.

I. INTRODUCTION

When software systems evolve, the amount and complexity
of interactions in the code grows. As a result, it becomes
increasingly challenging for developers to foresee and reason
about the effects of a change to the system. One proposed
solution, change impact analysis [6], aims to identify software
artifacts (e.g., files, methods, classes) affected by a given
set of changes. The impacted artifacts form the basis for
change recommendations, which suggests to a developer a
list of artifacts that are related to their (proposed) changes
to the code, supporting in the process of addressing change
propagation and ripple-effects [17, 12, 40, 44].

One promising approach to change recommendation aims
to identify potentially relevant items based on evolutionary
(or logical) coupling. This approach can be based on a range
of granularities of co-change information [14, 5, 33] as well
as code-churn [15] or even interactions with an IDE [42].
Change recommendation based on evolutionary coupling has
the intriguing property that it effectively taps into the inherent
knowledge that software developers have regarding depen-
dencies between the artifacts of a system. Our present work
considers co-change information extracted from a version
control system such as Git, SVN, or Mercurial.

One challenge faced by all recommender systems are false
positives. This challenge becomes acute if developers come
to believe that automated tools are “mostly wrong” [31].
Clearly, algorithms with higher accuracy will help address
this challenge. However, we can also address this challenge
with algorithms that assess the relevance of a proposed rec-
ommendation. In fact, the two approaches are complimentary.
In this paper we hypothesize that history aware relevance
prediction, which exploits earlier change recommendations to
assess the relevance of a current recommendation, and ranks
recommendations according to decreasing relevance, can help
mitigate the challenge of false positives.

Our approach consists of training a random forest classifi-
cation model [7] on previous change recommendations with
known relevance. The model is used to give a single likelihood
estimate of the relevance of future change recommendations.
Automatic assessment of recommendation relevance frees de-
velopers from having to perform this time-consuming task.
Our work facilitates further automation of the change recom-
mendation process, only notifying the developer when relevant
recommendations are available. Furthermore, our approach
compliments existing research work on improving mining
algorithm accuracy, as its application is independent of the
mining algorithm used to generate recommendations.
Contributions: (a) We present twelve features describing
aspects of change sets, change histories, and generated change
recommendations. These features are used to build a random
forest classification model for recommendation relevance. (b)
We assess our model in a large empirical study encompassing
sixteen software systems, including two from our industry
partners Cisco and KM. Furthermore, change recommenda-
tions are generated using both CO-CHANGE and TARMAQ to
assess the external validity of our approach. (c) We evaluate
the importance of each of the twelve features used in our
relevance classification model.

II. OVERALL APPROACH

The overarching goal of this paper is to attach appropriate
relevance scores to change recommendations based on associ-
ation rule mining. We consider this question of relevance from
a developer viewpoint, where “relevant” means “useful for the
developer”. We therefore consider a change recommendation
relevant if it contains a correct artifact as one of its top ten
highest ranked artifacts.

We propose an approach that uses classification based on
random forests [7] to learn from previous change recommen-
dations in order to assess the current one. Thus, relevance of
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a new recommendation is assessed based on the known rele-
vance of historically similar and dissimilar recommendations.

Traditionally, the same interestingness measure used to rank
the artifacts of a recommendation are also used to assess its
relevance [37, 28, 16]. For example, an interestingness mea-
sure might weight artifacts on a range from 0 to 1, enabling
an internal ranking. Given the ranking it is then up to the user
to assess whether the recommendation is relevant. Naturally,
if the top ranked artifacts have received weights close to the
maximum (1 in this example), the recommendation is assumed
relevant and will likely be acted upon. Recent work found that,
in the context of software change recommendation, Agrawal’s
confidence interestingness measure [1] performs among the
top-in-class when compared to more complex measures [30].
Considering this result, we use confidence as a baseline and set
out to compare the relevance predictions given by our proposed
approach against those based on confidence:

RQ 1 Does classification based on random forests improve upon the
use of confidence as a relevance classifier?

To train our classification model, a range of features must
be introduced that describe attributes related to a change rec-
ommendation. The better these features capture key attributes
the better we can learn from previous recommendations and
consequently the better we can assess the relevance of a current
recommendation. Thus our second research question is

RQ 2 What are the most important features for classifying change
recommendation relevance?

In our study we use random forests for their proven per-
formance [9] and intrinsic ability to assess variable (feature)
importance [7]. By answering our two research questions we
seek to uncover whether change recommendation relevance is
a viable venue for further research. If so, our approach may
prove to be an important compliment to existing algorithms for
change recommendation, helping to gain both better recom-
mendations, and higher confidence in those recommendations.

III. RELATED WORK

Recommendation Relevance: A shared goal in recommen-
dation systems is uncovering interesting findings in a data-set,
which means that an important research question concerns
what actually characterizes the interestingness of a finding.
Over the years, numerous measures for interestingness have
been proposed [37, 28, 16, 24, 21]. A recent evaluation of 39
of these measures in the context of software change recom-
mendation found that the traditional measures of confidence
and support perform just as well as more recent and often
more complex measures [30].

Cheetham and Price evaluated indicators (features) that can
be used to provide confidence scores for case based reasoning
systems [10, 11]. To provide a recommendation for a new case,
the k-nearest neighbor algorithm was used, thus the evaluated
features were tightly woven with the kind of output that
the k-nearest neighbor algorithm produces. Example features
include the “Number of cases retrieved with best solution” and
“Similarity of most similar case.” The features were tested for

importance using leave-one-out testing in combination with
the decision tree algorithm C4.5. In comparison, our use of
random decision trees avoids the need for leave out testing of
features as feature importance is internally accounted for.

Le et al. propose an approach for predicting whether the
output of a bug localization tool is relevant [23, 22]. As for
this paper, an output is considered relevant if a true positive
is part of the top 10 recommended artifacts. While change
recommendation can be seen as stopping faults before they
happen, bug localization is a complementary approach for
already existing faults. State of the art bug localization is based
on comparing normal and faulty execution traces (spectrum
based). In order to predict relevance, Le et al. identify 50
features related primarily to traces, but also considered the
weights of recommended (suspicious) artifacts. These features
were then used to train a classification model for relevance
based on support vector machines.
Rule Aggregation, Clustering, and Filtering: Rolfsnes
et al. propose aggregation of association rules to combine
their evidence (or interestingness) [35]. Aggregation likely
increases recommendation relevance: for example, consider
three rules, one recommending A with confidence 0.8 and two
recommending B with confidence 0.7 and 0.6 respectively.
Traditional approaches would use the highest ranking rule
and thus prioritize A over B. Rule aggregation combines the
evidence for B and thus leads to recommending B over A.

Several authors propose methods to discover the most infor-
mative rules in a large collection of mined association rules, by
either clustering rules that convey redundant information [38,
26, 20], or by pruning non-interesting rules [41, 3]. The overall
idea is that the removal of rules will reduce the noise in the
recommendations made using the remaining rules. However,
in contrast to rule aggregation, and to the approach proposed
in this paper, recommendations will be based on only part
of the available evidence. It remains open to future work to
investigate how this affects their relevance.
Parameter Tuning: Recent research highlighted that the
configuration parameters of data mining algorithms have a
significant impact on the quality of their results [27]. In
the context of association rule mining, several authors have
highlighted the need for thoughtfully studying how parameter
settings affect the quality of generated rules [43, 25, 18].

Moonen et al. investigate how the quality of software change
recommendation varied depending on association rule mining
parameters such as transaction filtering threshold, history
length, and history age [30, 29]. In contrast to that work,
which focused on configurable parameters of the algorithm,
this paper considers non-configurable features of the query,
the change history, and the recommendation history.

IV. GENERATING CHANGE RECOMMENDATIONS

A. Software Change Recommendation

Recommender (or recommendation) engines are information
filtering systems whose goal is to predict relevant items for
a specific purpose [32]. A common use of recommender
systems is in marketing where these systems typically leverage
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a shopper’s previous purchases and the purchases of other
shoppers to predict items of potential interest to the shopper.

In the context of software engineering, these systems typi-
cally leverage a developer’s previous changes together with
the changes made by other developers to predict items of
interest. Software change recommendation takes as input a
set of changed entities, referred to as a change set or query,
and predicts a set of entities that are also likely in need of
change. These entities may be any software artifact, such as
files, methods, models, or text documents. The study described
in this paper considers both files and methods as potential
artifacts. We extract these artifacts from the version control
history of a software system. Thus, software recommendation
helps answering questions such as “Given that files f1 and
f2 and method m changed, what other files and methods are
likely to need to be changed?”

A common strategy for change recommendation is to
capture the evolutionary coupling between entities [14]. In
this application, entities are considered coupled iff they have
changed together in the past. The key assumption behind
evolutionary coupling is that the more frequently two or more
entities change together, the more likely it is that when one
changes, the others will also have to be changed. In the context
of software change recommendation, evolutionary coupling is
commonly captured using association rule mining [44].

B. Targeted Association Rule Mining

Association rule mining is an unsupervised learning technique
aimed at finding patterns among items in a data set [1]. Asso-
ciation rule mining was first applied for market basket anal-
ysis, to find patterns (rules) describing items people typically
purchase together. In this context, the data set is expressed
as a list of transactions, where each transaction consists of a
set of items. For example, in the domain of grocery stores,
items likely include products such as “milk” and “cookies”,
and mining a rule such as “cookies” → “milk”, uncovers the
tendency of people who buy cookies (the rule antecedent) to
also buy milk (the rule consequent). This provides valuable
knowledge, for example suggesting that placing these grocery
items in close proximity will increase sales.

Shortly after the introduction of association rule mining,
Srikant et al. acknowledged that for most applications only
a few specific rules are of practical value [36]. This led
to the development of constraint-based rule mining where
only rules that satisfy a given constraint are mined. Typically,
constraints specify that particular items must be involved in the
rule’s antecedent. For example, consider a software engineer
who recently made a change to file x. A constraint could
specify that rule antecedents must contain x, thus limiting
recommendation to those involving x. Constraints are usually
specified by the user in the form of a query, at which the
mining process is said to be targeted. The resulting Targeted
Association Rule Mining Algorithms filter from the history all
transactions unrelated to the query, producing a more focused
set of rules. Doing so provides a significant reduction in
execution time [36].

To rank the resulting rules, numerous interestingness mea-
sures have been proposed [24, 16]. Such measure attempt to
quantify the likelihood that a rule will prove useful. The first
interestingness measures introduced, frequency, support, and
confidence, are also the most commonly used [1]. It is worth
formalizing these three. Each is defined in terms of a history,
H, of transactions and an association rule A → B, where A
and B are disjoint sets of items. To begin with rule frequency
is the number of times the antecedent and consequent have
changed together in the history:

Definition 1 (Frequency)

frequency(A→ B)
def
= |{T ∈ H : A ∪B ⊆ T}|

Second, the support of a rule is its relative frequency with
respect to the total number of transactions in the history:

Definition 2 (Support)

support(A→ B)
def
=

frequency(A→ B)

|H|

Finally, confidence is its relative frequency of the rule with
respect to the number of historical transactions containing the
antecedent A:

Definition 3 (Confidence)

confidence(A→ B)
def
=

frequency(A→ B)

|{T ∈ H : A ⊆ T}|

Support and confidence are often combined in the support-
confidence framework [1], which first discards rules below a
given support threshold and then ranks the remaining rules
based on confidence. Thresholds were originally required to
minimize the number of potential rules, which can quickly
grow unwieldy. However, the constraints introduced by tar-
geted association rule mining greatly reduce the number of
rules and thus do not depend on a support threshold for
practical feasibility.

C. Association Rule Mining Algorithms

A targeted association rule mining algorithm takes as input a
query Q and restricts the antecedents of the generated rules to
be various subsets of Q. The variation here comes from each
algorithm attempting to best capture relevant rules. Consider,
for example, the query Q = {a, b, c, d}. Potential rules include
a→ X and b, c→ Y . In fact, the set of possible antecedents
is given by the power-set of Q.

One of most well known algorithms, ROSE, limits the
number of rules by requiring that the antecedents are equal
to the query, Q [44]. Thus for {a, b, c, d}, ROSE rules are all
of the form a, b, c, d → X , where X is only recommended
if there exists one of more transactions where X changed
together with all the items of the query. At the other end of
the spectrum, CO-CHANGE partitions Q into singletons and
considers only rules for each respective singleton [19]. Thus
it produces rules of the form a→ x and b→ x.

While ROSE and CO-CHANGE makes use of the largest
and smallest possible rule antecedents, TARMAQ identifies the
largest subset of Q that has changed with something else in
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the past [34]. Thus TARMAQ may return the same rules as
CO-CHANGE (when the history is made up of only two-item
transactions) or the same rules as ROSE (when Q is a proper
subset of at least one transaction). However, TARMAQ can also
exploit partial matches (e.g., a history including transactions
larger than two items, but none having Q as proper subset).

While it may not be immediately evident, TARMAQ is
defined such that its recommendations are identical to those
of ROSE, when ROSE is able to produce a recommendation.
On the other hand, TARMAQ can produce recommendations
far more often than ROSE [34]. As a result, we performed
our empirical study using CO-CHANGE and TARMAQ, as
the behavior of ROSE is subsumed by that of TARMAQ.
As CO-CHANGE mines only singleton rules and TARMAQ
potentially mines rules which maximize the antecedent with
respect to the query, they together cover a large range of
possible recommendations.

V. OVERVIEW OF MODEL FEATURES

This section introduces the features that we use to build
our random forest classification model. We consider three
categories of features:

• features of the query,
• features of the change history, and
• features of the recommendation.

It is worth noting that the features describing the query
are known a priori, while features of the change history
and the change recommendation are only known after a
recommendation has been generated. Fortunately, a change
recommendations can be generated in mere milliseconds and
the corresponding feature set can therefore be included without
incurring undo computational expense.

A. Features of the Query

Query Size: The first feature of a query we consider is simply
its size. For example, if a single method is changed the query
size is 1, if two different methods are changed, the query size
is 2 and so on. Furthermore, some files may not be able to be
parsed for fine-grained change information, changes to these
files only ever increase the query size by 1. Throughout the
rest of the paper we use the term artifact as a generic way
of referring to both (unparsable) files and (parsable) methods.
We hypothesize that query size may be important for relevance
as when it increases one of the following is likely occurring:
(a) The developer is working on a complex feature, requiring
code updates in several locations. Here increased query size
indicates specificity. (b) On the other hand, if a developer is not
compartmentalizing the work and thus is working on multiple
features at the same time, increased query size indicates chaos
as unrelated artifacts are added to the same commit.
Number of Files Changed/Number of Methods Changed:
We record the granularity of changes in two separate features:
the number of files changed and the number of methods
changed. For example, if the methods m1 and m2 change in
the file f1, and the method m3 change in the file f2, we record
that 3 methods and 2 files have changed. By including these

metrics of query granularity, we aim to capture the specificity
of the corresponding change recommendation.
Number of New Artifacts: If a new file or new method
is included in a query, we know that nothing has changed
together with it previously, thus from an evolutionary perspec-
tive, the new artifact is uncoupled from all other artifacts. The
presence of new artifacts in combination with known artifacts
adds uncertainty and is therefore considered as a feature.

B. Features of the Change History

Whenever an existing artifact, a, is changed, a list of relevant
transactions can be extracted from the change history. A
transaction is relevant if it contains the changed artifact. From
these transactions mining algorithms identify other artifacts
that typically changed with a, forming the basis for the
resulting change recommendation.
Number of Relevant Transactions: The number of relevant
transactions is the number of transactions with at least one
artifact from the query. This metrics provides a measure of
the churn rate (i.e., how often the artifacts change).
Mean Size of Relevant Transactions: While the number of
relevant transactions tells us how often the artifacts found in a
query change, it does not tell us how often they change with
other artifacts, the mean size of relevant transactions attempts
to capture this feature.
Mean/Median Age of Relevant Transactions: Two age
related features included involve the change in dependencies
between artifacts as software evolves (e.g., because of a
refactoring) and code decay, where artifacts become “harder
to change” (a known phenomena in long lived software sys-
tems [13]). The feature “age of relevant transactions” attempts
to capture these two age related aspects. Note that two features
are actually used: the mean age and the median age.
Overlap of Query and Relevant Transactions: If there
are transactions that exhibit large overlap with the query, this
might indicate highly relevant transactions [44]. We capture
this through the “overlap percentage”. Note that the percentage
reports the single largest match rather than the mean.

C. Features of the Recommendation

A recommendation boils down to a prioritized list of associ-
ation rules giving the potentially affected artifacts. However,
different mining algorithms may return different lists. While
the features described so far are independent of the mining
algorithm, in this section we consider features that are aspects
of the recommendation and thus the particular algorithm used.
Confidence and Support of Association Rules: A recom-
mendation is constructed from association rules of the form
A → B. Here “A” includes changed artifacts while “B” the
recommended artifacts. To be able to distinguish rules, weights
can be provided through interestingness measures. One way
of providing these weights uses the support and confidence
interestingness measures (Definitions 2 and 3). Traditionally,
interestingness measures are used in isolation to judge whether
a recommendation is relevant [44, 40, 34]. In this paper we
extend their use by considering aggregates of the top 10 rules
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in order to indicate recommendation relevance. We include
three aggregates: The top 10 mean confidence, the top 10 mean
support and the maximum confidence. Each feature is meant
to capture the likelihood of whether there exist at least one
relevant artifact in the top ten.
Number of Association Rules: If a recommendation con-
sists of a large number of rules, two non-mutually exclusive
situations may exist: (a) the query is large and the contained
artifacts have changed with something else in the past, or (b)
at least one artifact of the query has changed with a large
number of other artifacts in the past. In either case, a large
recommendation is a symptom of non-specificity and may thus
prove a valuable feature for classifying true negatives.

VI. EXPERIMENT DESIGN

Our empirical study is designed to answer one primary ques-
tion: can we predict if a recommendation contains relevant ar-
tifacts? To answer this question we generate a large recommen-
dation oracle, over which we train random forest classification
models using the features described in section V. Finally, we
evaluate the resulting models by comparing their performance
against two confidence based predictions of relevance. These
aim to function as a baseline for whether a developer would
act upon a given recommendation.

1) Maximum Confidence: a recommendation is predicted
as relevant if the confidence of the artifact with the
highest confidence is larger than a given threshold.

2) Mean Confidence 10: a recommendation is predicted as
relevant if the mean confidence of the top ten artifacts is
greater than a given threshold.

The rationale behind maximum confidence mimics a developer
who is only willing to consider a recommendation’s highest
ranked artifact, while that of mean confidence 10 mimics a
developer who is willing to consider the recommendation’s
top ten artifacts.

Our study encompasses change recommendations generated
from the change history of sixteen different software systems
with varying characteristics. Two of these systems come from
our industry partners, Cisco and KM. Cisco is a worldwide
leader in the production of networking equipment, We analyze
the software product line for professional video conferencing
systems developed by Cisco. KM is a leader in the produc-
tion of systems for positioning, surveying, navigation, and
automation of merchant vessels and offshore installations. We
analyze the common software platform KM uses across various
systems in the maritime and energy domain.

The other fourteen systems are the well known open-source
projects reported in Table I along with change history statistics
illustrating their diversity. The table shows that the systems
vary from medium to large size, with over 280 000 unique
files in the largest system. For each system, we extracted
up to the 50 000 most recent transactions. This number of
transactions covers vastly different time spans across the
systems, ranging from almost twenty years in the case of
HTTPD, to a little over ten months in the case of the Linux
kernel. In the table, we report the number of unique files

changed throughout the 50 000 most recent transactions, as
well as the the number of unique artifacts changed. These
artifacts include, in addition to file-level changes, method-
level changes for certain languages.1 Finally, the last column
of Table I shows the programming languages used in each
system, as an indication of heterogeneity.

The remainder of this section first explains the setup used
to generate change recommendations using CO-CHANGE and
TARMAQ. It then details how these recommendations are used
to train and evaluate models for relevance prediction. The
results of our study are presented in section VII.

A. Generating Change Recommendations

Establishing the Ground Truth: The change history of
a software system exactly describes, transaction by transac-
tion, how to (re)construct the current state of the system.
Consequently, we can assume the majority of the time that
each transaction has some intention behind it, and that the
changes in the transaction have some meaningful relation to
each other. In fact, if this assumption is completely misguided,
recommendations based on change histories would degenerate
to random prediction, which is clearly not the case.2 Thus,
given a subset Q of transaction C, a good recommendation
algorithm should identify the complement E = C/Q as the
set of impacted items. Here E captures the ground truth on
whether a change recommendation is truly relevant because
it includes those artifacts that actually changed alongside
Q. For this reason, E is used when evaluating the change
recommendation generated for query Q.
Sampling Strategy: Construction of the change scenarios
involves two steps:

• sampling transactions and
• generating queries from each sampled transaction.

We start by fetching the 50 000 most recent transactions from
each subject system. From these, we then determine the 10 000
most recent transactions whose size is between 2 and 300.
The minimum number, 2, ensures that there is always a
potential impact set for any given query, while the maximum
number, 300, covers at least 99% of all transactions while
aiming to omit large changes such as licensing changes. From
each sampled transaction C, the impact set E is randomly
determined, but ensured to consist of at least ten items.
Ranking Rules: The rules mined by each algorithm all
share the property that their support is at least one because
we operate with an absolute minimal support constraint. By
including “all rules” like this, we ensure that both high
frequency as well as low frequency (rare) rules are included
in the recommendations [39].

The support measure is not otherwise used for ranking.
When support is used for ranking, special care needs to
be taken as rare (infrequent) rules always rank lower then
more frequent rules. This is a result of the downward closure

1 We currently extract method-level change information from files of C,
C++, C#, and Java code.

2 The chance of randomly predicting a correct method is
1/(number of methods), which for any sizable system approaches zero.
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TABLE I
CHARACTERISTICS OF THE EVALUATED SOFTWARE SYSTEMS (BASED ON OUR EXTRACTION OF THE LAST 50 000 TRANSACTIONS FOR EACH).

Software System History Number of Number of Avg. transaction
(in yrs) unique files unique artifacts size (artifacts) Languages used∗

CPython 12.05 7725 30090 4.52 Python (53%), C (36%), 16 other (11%)
Mozilla Gecko 1.08 86650 231850 12.28 C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git 11.02 3753 17716 3.13 C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop 6.91 24607 272902 47.79 Java (65%), XML (31%), 10 other (4%)
HTTPD 19.78 10019 29216 6.99 XML (56%), C (32%), Forth (8%), 19 other (4%)
Liferay Portal 0.87 144792 767955 29.9 Java (71%), XML (23%), 12 other (4%)
Linux Kernel 0.77 26412 161022 5.5 C (94%), 16 other (6%)
MySQL 10.68 42589 136925 10.66 C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP 10.82 21295 53510 6.74 C (59%), PHP (13%), XML (8%), 24 other (20%)
Ruby on Rails 11.42 10631 10631 2.56 Ruby (98%), 6 other (2%)
RavenDB 8.59 29245 47403 8.27 C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion 14.03 6559 46136 6.36 C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit 3.33 281898 397850 18.12 HTML (29%), JavaScript (30%), C++ (26%), 23 other (15%)
Wine 6.6 8234 126177 6.68 C (97%), 16 other (3%)
Cisco 2.43 64974 251321 13.62 C++, C, C#, Python, Java, XML, other build/config
KM 15.97 35111 35111 5.08 C++, C, XML, other build/config
∗ languages used by open source systems are from http://www.openhub.net, percentages for the industrial systems are not disclosed.

property: any subset of a rule must have equal or larger support
relative to the origin rule [2]. For example, given the two rules
r1 = {a} → {x} and r2 = {a, b} → {x}, r2 cannot have
higher support than r1.

By using the confidence measure to rank rules, both rare
and non-rare rules may be ranked highly. Still, the frequency
of a pattern continues to inform the relevancy of a rule. To
this end, recall that the top 10 mean support is included as a
feature in our prediction model.

B. Evaluation of Relevance Prediction
Blocked Cross-Validation: Last block validation is a fre-
quently used scheme for evaluating prediction models. Here
the data is split into two blocks, with the first block being
used to train the model and the second block being used to
evaluate it. This setup has the advantage of respecting the
temporal nature of the data. However, a drawback is that
not all data is used for both training and prediction [4].
To address this a traditional cross-validation setup may be
used. However, doing so violates the temporal nature of
time series data, and, in the worst case, may invalidate the
results [4]. Because in time series data future data naturally
depends on prior data, we use blocked cross-validation to

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Temporal order of change recommenda;ons
for one so=ware-system + mining algorithm

B4B1..B3

B1..B2 B3

Train

B10

B2

…

B1..B9

Predict

B1

…

Cross-valida;on scheme:

Fig. 1. The blocked cross-validation scheme used in our study. Notice that
all blocks except B1 and B10 are used for both training and prediction

preserve the temporal order between training and evaluation.
In our configuration we partition each set of transactions into
ten equally sized blocks, preserving temporal order between
blocks. We then train nine random forest classification models
for each software-system and mining algorithm combination.
As illustrated in Figure 1, each random forest is trained on an
incrementally larger subset of the available recommendations.
In total, 16 systems ∗ 2 algorithms ∗ 9 forests = 288 random
forests are trained.
Measuring Relevance: The random forest and confidence
based classification models have probabilistic interpretations.
The confidence interestingness measure itself is given by the
conditional likelihood P (B|A), where B is the recommended
artifact and A is one or more artifacts that changed (i.e., arti-
facts from the query) [1]. The maximum and mean confidence
models use this information to capture the likelihood that
a developer will act upon a given change recommendation.
Here a “0” indicates very unlikely while a “1” indicates
very likely. In the case of random forests, the likelihood is
the result of the votes obtained from the collection of trees
making up the random forest [7]. Each decision tree casts a
single vote. As each tree is built from a random selection of
change recommendations, the end likelihood is an indication
of internal consistency within the data set for a particular
scenario. In other words, if a certain scenario always results in
a certain outcome, it is very likely that similar new scenarios
will have the same outcome. Finally, in the evaluation sets
used throughout our study we encode the possible classes in
a similar way, the binary options are either 0 (not correct in
top 10) or 1 (correct in top 10).

VII. RESULTS AND DISCUSSION

We organize the discussion of our results around the two
research questions proposed in section V. Throughout this
section we will consider prediction performance for each
individual software system, and for each of the mining al-
gorithms: CO-CHANGE and TARMAQ. By doing so we get an
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Fig. 2. Descriptive view of errors using the Mean Absolute Error (MAE).
Each line shows the mean MAE over all 16 systems, and the ribbon shows
the standard deviation.

indication of how generalizable the results are to other systems
and other algorithms. In the following we briefly introduce
each performance metric before presenting the corresponding
results.

A. RQ 1: Comparison to Confidence as a Relevance Predictor

While comparing the three classification models, we focus on
two aspects of their relevance predictions:

1) the error with respect to the actual relevance, and
2) the performance across different classification thresholds.

We start with a descriptive view of the errors exhibited by
each classification model, for this we use the Mean Absolute
Error (MAE). In our case, MAE measures the mean absolute
difference between the actual and predicted value for whether
there is a correct artifact in the top ten artifacts of a recom-
mendation. For example, given a certain feature as input, the
random forest might give the output 0.67, indicating a 67%
likelihood that the resulting recommendation will be relevant.
If in actuality, we know that for this scenario there is indeed
a correct artifact in the top ten the prediction error would be
1 − 0.67 = 0.33 because we encode “knowing” as “1”. Note
that lower is better. Figure 2 shows the MAE across the 16
software systems for the two mining algorithms. To reduce
clutter, we present summarized information where each line is
the mean over all systems and the ribbon indicates the standard
deviation. For this first look at the data we have also preserved
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Fig. 3. Accuracy of classification models using Brier scores. Each line shows
the mean MAE over all 16 systems, and the ribbon shows the standard
deviation. Models below the horizontal black line tend to classify correctly
with regards to a 0.5 classification threshold.

results for each evaluation block. This enables a view into error
fluctuations across time. First, there is no apparent overall
trend across the evaluation blocks. This is good news as
it provides evidence that the analysis is stable across time.
This is also supported by fitting linear regression lines (left
out to minimize clutter). The random forest model shows
less variance in error across systems and algorithms, while
for some systems the maximum confidence model exhibits
less overall error. For the change recommendations where the
actual relevance was 1 (Correct in Top 10), the maximum
confidence model frequently matches the prediction exactly
and therefore minimizes the error for these recommendations.

In terms of accuracy of each classification model a proper
scoring rule must be used [8]. For proper scoring rules,
the maximum score is achieved if the prediction distribution
exactly matches the actual distribution. One such scoring rule
is the brier score. In the case of binary classification, which
is our task, the brier score is the mean squared error:

BS =
1

N

N∑
i=1

(pi − ai)
2

Where pi is the predicted relevance for scenario i, and ai
is the actual relevance (1 or 0). Figure 3 presents the Brier
scores for each classification model across each evaluation
block, software system, and mining algorithm. Note that lower
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Fig. 4. ROC curves for the prediction models trained for each software system
and algorithm.

is better. In the figure, the horizontal black line at y = 0.25
indicates the brier score of a neutral classification model.
A neutral model always makes the prediction 0.5, where
relevance and non-relevance are equally likely. Brier scores
below the line indicate a prediction model that tends to
be on the “right side of the midpoint”. We clearly see the
random forest model being consistently more accurate across
algorithms and software systems.

While the error informs us about the overall fit of a predic-
tion model, it does not capture performance across different
classification thresholds. When classification models are used
in practice, thresholds must be set to balance true positives
against false positives and false negatives. To investigate
the ability of our three prediction models in these terms,
we consider the ROC curve and the Precision/Recall curve.
First, the ROC curve in Figure 4 plots the True Positive
Rate (TPR = TP

TP+FN ) against the False Positive Rate
(FPR = FP

FP+TN ) at classification thresholds from 0 to 1. It
is immediately apparent that the confidence based models do
not meaningfully respond to different classification thresholds,
as data points are not evenly spread across the x-axis. Further-
more, there are strong linear relationships between their TPRs
and FPRs. This was also reflected in corresponding Pearson
correlation coefficients, where all coefficients were calculated
to be 0.97 or higher. Intuitively, the effect we see is that as
the classification threshold is lowered, the confidence models
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Fig. 5. Precision/Recall curves for the prediction models trained for each
software system and algorithm.

for recommendation relevance classify comparably increased
amounts of recommendations both correctly and incorrectly.
For example, both TPR and FPR increase similarly. Further-
more, observe that the range and domain of the TPR and FPR
for the confidence models do not fully extend between 0 and
1. This is the result of a high percentage of change scenarios
being given the relevance “1”, and these scenarios being evenly
split between True Positives (TPs) and False Positives (FPs). In
other words, the lack of even distribution of data-points results
in less variation in TPR and FPR, which again is reflected
in the range and domain. To further support our findings we
compared the partial Area Under the Curve (pAUC) between
the ROC of the random forests and each of the confidence
based models. We used roc.test from the R package pROC,
the significance test is based on bootstrapped sampling of
multiple AUCs and computing their difference. Across all
software systems and for both CO-CHANGE and TARMAQ
the pAUC were significantly larger (p < 0.05) for the random
forest model. Thus, the random forest classifier consistently
provide better estimates of relevance across various thresholds
compared to the purely confidence based methods explored.

As laid out earlier, relevance prediction can be performed
in a background thread that only notifies the developer when
there is a high likelihood for a true positive recommendation.
In this application, the positive class (correct in top ten) is
therefore of the most interest. Notifications that there are
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no relevant artifacts would be of less use. With this view,
the precision ( TP

TP+FP ) of the classification models become
imperative. The task is to find an appropriate classification
threshold that makes true positives likely (high precision),
while still maintaining practicality in that recommendations
can be regularly made (high recall). Figure 5 shows the
precision/recall curves for our three prediction models for each
software system and mining algorithm. First, the abnormality
in slope, range and domain for the confidence models can
again be attributed to the weak connection to threshold-
changes. Furthermore, while one usually expects a decrease
in precision as recall increases, this does not necessarily need
to be the case. The trends for the confidence models in
Figure 5 are the result of having slightly higher concentra-
tions of positive classifications than negative classifications
on lower thresholds. As thresholds are lowered further, more
recommendations become TPs, and the ratio between TPs and
FPs actually increases. An implication of this is that at least
for the confidence measure, its value cannot be used directly
as an indication of relevancy.

Turning to the random forest models, these exhibit greater
defined behavior, where negative classifications are primarily
located in lower likelihood thresholds, thus precision decreases
as recall increases. In terms of recommending concrete clas-
sification thresholds for our random forest model we suggest
that this should be adjusted with respect to the system domain
knowledge of the developer for which the recommendation is
made. In Table II we have provided the mean precision and
recall across software systems for the example thresholds at
0.5 and 0.9. As developers become more acquainted with a
system, they should also be able to better differentiate rele-
vant and non-relevant recommendations. As such, experienced
developers might afford a higher rate of recall at the cost of
lower precision. A classification threshold of 0.50 becomes
reasonable for this group, assuming TARMAQ is used. For in-
experienced developers one wants to minimize confusion, and
therefore maximize the precision of change recommendations.
Thus, a threshold such as 0.9 might be appropriate for these
developers, resulting in change recommendations only having
false positives in about 1 to 3 per 100 recommendations.

B. RQ 2: Analysis of Features

Having empirically established that the random forest classi-
fications models are superior at predicting change recommen-
dation relevance, we next consider which features bring the

TABLE II
EXAMPLES OF PRECISION AND RECALL FOR THE RANDOM FOREST

CLASSIFICATION MODEL. THE STANDARD DEVIATION (SD) CAPTURES
FLUCTUATIONS BETWEEN SOFTWARE SYSTEMS.

Classification Threshold 0.5 0.9

Algorithm Mean SD Mean SD
CO-CHANGE Precision 0.775 ± 0.075 0.971 ± 0.020

Recall 0.684 ± 0.046 0.100 ± 0.074
TARMAQ Precision 0.868 ± 0.062 0.993 ± 0.008

Recall 0.735 ± 0.032 0.277 ± 0.102
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Fig. 6. Feature importance as determined by mean decrease in accuracy. Each
line represents a separate software system, the line color & style indicates if
a fine-grained change history was available.

most value to the models. Breiman introduced the concept of
variable importance for random forests [7]. Once the decision
trees of the random forests have been built, the process can
self-assess the importance of each feature. The basic idea is
to observe if randomly permuting a feature changes prediction
performance [7]. Averaging the accuracy changes over all trees
gives the mean decrease in accuracy (when permuted) for each
feature.

The corresponding plot for the features included in our
model is provided in Figure 6. For two of the studied software
systems (KM and Rails), we only have file-level change
information. These two systems are shown using the dashed
(red) lines. Naturally, permuting the “Number of methods
changed” feature does not change accuracy for these two
systems, as the value is always 0, as reflected in Figure 6.

To begin with TARMAQ was constructed to produce a
focused recommendation that matches the query as closely as
possible [34]. This is evident in the figure where the “Number
of rules generated” being an essential feature for TARMAQ.
Thus for TARMAQ, variation in the number of rules generated
meaningfully correlates with recommendation relevance; if a
large subset of the query has changed with something else in
the past, this results in fewer possible rule antecedents and
thus fewer rules, which evidently increases the likelihood of
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a relevant recommendation. For CO-CHANGE this feature has
less importance. For the remaining features, Figure 6 shows
a rather clear picture; the query based features (the bottom
four) are the least important, the attributes they represent
are better captured by other features. Of the interestingness
measure based features the “Top 10 mean confidence” proved
most useful. Finally, all history related features are comparably
important.

The high degree of co-variance between software systems
suggests that model transfer to other systems is viable. That is,
classification models learned on one or more systems, should
be reusable for a new (unknown) system. If this can be shown
to work reliably, systems that are early in their evolution can
still benefit from models generated from more mature systems.
However, care must be taken to adapt the feature variation of
the random forest to fit the variation found in new software
system.

C. Threats to Validity

Implementation: We implemented and thoroughly tested all
algorithms and our technique for model classification in Ruby
and R respectively, However, we can not guarantee the absence
of implementation errors.
Variation in Software Systems: We have sought to obtain
generalizable results by evaluating over a range of heteroge-
neous software systems, however, we also uncovered that rele-
vance prediction performance varies between systems. Future
work should investigate the effects of system characteristics
on prediction performance.
Mining Algorithms Studied: In our evaluation we have
studied classification models for recommendations generated
using both the CO-CHANGE and TARMAQ mining algorithms.
For both algorithms we achieve strong results. However, we
acknowledge that comparable results cannot be guaranteed for
other mining algorithms.
Using Other Interestingness Measures: In our study we
focused on the confidence interestingness measure, thus our
results are limited to this measure. As such, future work
should investigate the use of other interestingness measures,
both for comparison to the random forest predictor, as well
as being included as part of the model. We also envision that
a variation of the relevance prediction presented here might
be an interestingness measure recommender, thus essentially
creating an ensemble of measures where the most relevant is
used at a given time.
Recommendations Used for Training and Evaluation: We
train and evaluate our classification model over a constructed
set of change recommendations. Each recommendation is the
result of executing randomly sampled a query from an existing
transaction where the complement of the query and the source
transaction is used as the expected outcome. However, this
approach does not account for the actual order in which
changes were made before they were committed to the ver-
sioning system. As a result, it is possible that queries contain
elements that were actually changed later in time than elements
of the expected outcome. As such, we cannot guarantee

that recommendations used in training and evaluation exactly
reflect each system’s evolution.

VIII. CONCLUDING REMARKS

Change recommendation is clearly an asset to a software de-
veloper maintaining a complex system. However, its practical
adoption faces two challenges: (a) recommendations must be
both accurate and relevant. We believe that both challenges
can be effectively addressed using historically proven change
recommendations.

This paper shows that random forest classification using the
12 features that describe aspects of the change set (query),
change history (transactions) and generated change recommen-
dations is viable. We compare the random forest model against
the state-of-the-art (based on confidence). We evaluate our
approach in a large empirical study across 16 software systems
and two change recommendation algorithms. Our findings are
as follows:
Finding 1: The random forest classification model consis-
tently outperforms the confidence based models in terms of
accuracy (Brier scores).
Finding 2: The random forest classification model achieves
significantly larger area under ROC curve than both confidence
based models.
Finding 3: While the confidence measure is appropriate
for ranking of artifacts, the values themselves should not be
interpreted in isolation as overall estimates of recommendation
relevance.
Finding 4: The importance of model features may varies
between algorithms. For example, the relevance of TARMAQ
recommendations is best predicted by considering the number
of rules generated, while this feature is less important for CO-
CHANGE. However, the remaining features studies showed
consistent importance between algorithms.

Directions for Future Work
Looking forward, it would be of interest to study the effects of
using stricter and looser definitions of relevance (e.g., relevant
if correct in top three vs top twenty). Furthermore, rather than
classification, relevance can also be studied as a regression
problem, predicting other recommendation metrics such as
precision, recall, average precision etc. In addition, we plan
to study the behavior of relevance classification models over
other interestingness measures, and investigate the viability
of model transfer between software systems. Finally, we plan
to look into improving the classification model by including
features such as the number of relevant transactions authored
by core contributors vs occasional contributors, the weighting
recent relevant transactions higher than older transactions, and
the text similarity scores between change set and relevant
transactions.
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