Improving History-Based
Change Recommendation Systems
for Software Evolution

Ph.D. Dissertation
Thomas Gramstad Rolfsnes

Dissertation submitted July, 2017

© Thomas Gramstad Rolfsnes, 2017

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1885

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

The software that we depend on every day is constantly changed. These
changes are necessary to comply with shifting user requirements, keeping a
competitive advantage, adapting to changes in other software, and to fix the
ever-present bugs. It is crucial that the impact of these changes is well under-
stood, as failure to do so may well lead to additional bugs being introduced,
which may directly affect the longevity and success of the software.

In order to understand the impact of a change, the parts of the software
which is affected by the change must be uncovered. This thesis explores
through five papers how the change history of software can be leveraged to
address this challenge. From a change history, it is possible to identify the
files and methods that typically change together. Furthermore, these change
patterns can successfully be used to derive association rules which can predict
the impact of future changes.

As with all recommendation systems, a danger is always that parts of a
recommendation are wrong or missing (false positives and negatives). This
thesis presents steps towards reducing such issues for change recommen-
dation systems utilizing change patterns and association rule mining. The
contributions with respect to each paper are as follows: (A) A targeted asso-
ciation rule mining algorithm for filtering out irrelevant association rules (B)
An approach for aggregating association rules, increasing overall recommen-
dation precision (C) A study of parameters for association rule mining in this
context (D) A study of the effects of change history length and age on rec-
ommendation precision (E) And lastly, an approach for predicting whether a
change recommendation is relevant. These contributions help drive forward
a field which has long been dominated by approaches based on static and dy-
namic analysis. By building on top of version control systems, our approach
has considerably less overhead and is inherently language agnostic.

1ii

Acknowledgements

4 years ago, I never thought I would do a PhD. Now, I'm sitting in front
of 200 pages that I'm proud of. This has only been possible because of a
group of amazing people, and I am sincerely grateful for all the time you
have given me. I must express my deepest gratitude to my main supervisor,
Leon Moonen, you have helped me develop myself, both as a researcher and
a person. To Razieh Behjati, which has been with me since my master thesis,
your feedback along the way has been invaluable. To Stefano Di Alesio, I'll
probably have dreams about our many whiteboard sessions. And to Dave
Binkley, you were the missing member in our team of Avengers, we couldn’t
have done it without you.

And to my wife, Ingrid, one should think that finishing a degree in clinical
psychology, and giving birth to our first son with the second on the way,
would be more than enough for a single person to handle. But through all
of this you have been my greatest cheerleader, and have always been there
when I needed you.

To my son, Elias, you are my greatest motivation.

Contents

Abstract iii

Acknowledgements \4

I Summary 1

1 Introduction L L 3

2 Primer on Association Rule Mining 6

3 (A) Mining Targeted Association Rules 7

4 (B) Aggregating AssociationRules 9

5 (C) Configuring the Recommendation Engine 11

6 (D) The Impact of Change History Length and Age 13

7 (E) Predicting Relevant Recommendations 14

8 Granularity of Change Histories 15

9 Experiment Infrastructure: EVOC 17

10 Conclusion Lo 18

References 19

II Papers 23
A Generalizing the Analysis of Evolutionary Coupling for Software

Change Impact Analysis 25

1 Introduction L. 27

2 Research Questions 29

3 Background 29

4 Problem Description 30

5 Proposed Solution: TARMAQ 32

6 Evaluation 34

6.1 Subject Systems o L0000 34

6.2 Determining Transactions 36

6.3 Query Generation Process 37

vii

Contents

6.4 Query Evaluation. 38
6.5 Implementation and Execution Environment 39
7 Results 39
7.1 Overall Performance on Average Precision (RQ3.1) . . . 40
7.2 Opverall Performance on Time (RQ3.1) 41
7.3 Performance on Seen Queries (RQ3.2) 42
7.4 Performance on Unseen Queries (RQ3.3) 43
7.5 Seen vs. Unseen Queries (RQ3.4). 43
7.6 Performance of Algorithms on Individual Systems (RQ3.5) 45
8 Discussion 45
8.1 Overall Performance on Average Precision (RQ3.1) . . . 45
8.2 Overall Performance on Time (RQ3.1) 46
8.3 Performance on Seen and Unseen Queries (RQ3.2-4) . . 46
8.4 Performance of Algorithms on Individual Systems (RQ3.5) 46
8.5 Threats to Validity 47
9 Related Work 49
10 Concluding Remarks 51
References e 52

Improving Change Recommendation using Aggregated Association

Rules 57
1 Introduction 59
2 Association Rule Mining 61
3 Problem Description 63
4 Interestingness Measures 65
5 Association Rule Aggregation 70
5.1 Hyper-Rule Formation 70
52 Interestingness Measure Aggregation 71
6 Aggregation Functions 72
6.1 Cumulative Gain 72
6.2 Discounted Cumulative Gain 73
6.3 Hyper Cumulative Gain 74
6.4 Centering 76
6.5 Aggregation of Negative Values 77
7 Experiment Design 78
7.1 Subject Systems oo 78
7.2 History Extraction 80
7.3 History Filtering 84
74 Transaction Sampling and Query Creation 84
7.5 Generate Change Recommendations. 86
7.6 Evaluate Change Recommendations 86
8 Resultsand Discussion 87
8.1 Applicability of Hyper-Rules (RQ 1) 87

viil

Contents

8.2 Ability to Improve Precision (RQ2) 88
83 System Specific Analysis (RQ3) 94
8.4 Effect of Granularity (RQ4) 96
85 Addendum I: Time Complexity 100
8.6 Addendum II: Absolute Performance 101
9 Threatstovalidity 101
10 Related Worko o 104
11 Concluding Remarks 106
11.1 Proof for Discounted Cumulative Gain 107
11.2 Proof for Hyper Cumulative Gain 109
References 111

Practical Guidelines for Change Recommendation using Associa-

tion Rule Mining 119
1 Introduction 121
2 Association Rule Mining 123
3 Problem Description 124
4 Empirical Study oo oo 128
4.1 Subject Systems Lo oL 128
4.2 Interestingness Measures 129
4.3 History Filtering 129
44 Query Generation and Execution. 130
4.5 Generating Change Recommendations 131
4.6 Performance Measure 131
5 Results 132
5.1 Analysis of Explanatory Variables 133
52 Impact of Interestingness Measures 133
53 Impact of Transaction Filtering 135
54 Impact of Query Size and Expected Outcome Size . . . 137
55 Impact of Average Transaction Size 140
56 Threats to Validity 140
6 Related Work 142
7 Concluding Remarks 143
References 146

What are the Effects of History Length and Age

on Mining Software Change Impact? 151
1 Introduction 153
2 Mining Software Change Impact 155
3 Research Questions 156
4 Empirical Study o oo 158

4.1 Subject Systems Lo Lo 158

42 History Lengthand Age 160

ix

Contents

4.3 History Filtering 162
44 Query Generation and Execution. 162
4.5 Estimating the Impact of a Change 163
46 Quality Measures 164
4.7 Bootstrapping Procedure 165
5 Resultsand Discussion 165
5.1 Coarse-grained Study 165
52 Fine-grained Study 167
53 Project Characteristics 175
54 Longitudinal Study 179
55 Stability Study o0 o 182
6 Threatsto Validity 184
7 Related Work 185
8 Concluding Remarks 187
8.1 Future Work oo L 188
References 188
Predicting Relevance of Change Recommendations 193
1 Introductiono 000 195
2 Overall Approach 196
3 RelatedWork 197
4 Generating Change Recommendations 199
4.1 Software Change Recommendation 199
42 Targeted Association Rule Mining 199
43 Association Rule Mining Algorithms 201
5 Overview of Model Features 202
5.1 Features of the Query 202
52 Peatures of the Change History 203
5.3 Features of the Recommendation. 203
6 Experiment Design 204
6.1 Generating Change Recommendations 205
6.2 Evaluation of Relevance Prediction 207
7 Resultsand Discussion 208
7.1 RQ 1: Comparison to confidence as a relevance predictor 209
7.2 RQ 2: Analysis of features 214
7.3 Threats to Validity 216
8 Concluding Remarks 217
References 218

Part 1

Summary

Summary

1 Introduction

Every instant, somewhere in the world, a line of code is changed. Bugs are
fixed and new features implemented. Meanwhile, code is also inherently in-
terconnected with pieces of logic requiring other pieces of logic in complex
networks. Thus every time a line of code is changed we incur the risk of in-
validating the intended logic encapsulated by the program. At the same time,
non code artifacts such as configuration files or documentation are also in need
of synchronization. Complicating the matter even further, software of signifi-
cant size is seldom worked on by a single developer, and each developer may
have a different mental model of the software system. Furthermore, as the soft-
ware grows larger it becomes progressively harder for any single developer
to retain complete knowledge of the intricacies of interacting artifacts.

With the advent of electronic computers, developers early on saw the need
for version control to track changes to their software over time. Case in point,
the first system for version control, SCCS, stems all the way back to 1972 [1].
As their most basic feature, version control systems makes it possible to re-
trieve any previous version of a particular file. In modern times however,
version control systems are a critical component in enabling multiple devel-
opers to seamlessly work on the same code base. Part of this stems from
the central concept of a change set which describes exactly the lines that were
added, changed or deleted across multiple files. Typically, each change set is
also accompanied with a written message summarizing the intention behind
the changes. Thus version control systems effectively supports best practices
by helping developers think about code modifications as isolated units of work.

As software evolves, more and more change sets are indexed by the ver-
sion control system to slowly build up a change history. Within the change
history, we can trace the evolution of every artifact, and of particular inter-
est in our case, we can identify patterns describing how artifacts typically
change together. For example, we might observe that whenever method A() is
changed, then methods methodB() and methodC() are also typically changed.

Through these patterns we can communicate valuable information to the soft-
ware developer. We can for example calculate the potential impact that a set
of changes has, or inform the developer about potential “next steps”. Such
recommendations can help maintain the mental model for an experienced
developer, or help build the model from scratch for a developer new to the
system. Consider the following simple example:

Example 1 (Identifying Change Patterns). A video chat system has been built
in such a way that certain changes to the close_connection() method requires
that the open_connection() method also needs to be updated. Furthermore, the
configuration file connection_config on occasion also needs to be updated. Given
these couplings, the change history might look something like this:

ID | Change set

100 | close_connection(),open_connection()

104 | close_connection(),open_connection(),connection_config
105 | close_connection()

The line with ID = 100, describes that close_connection() and open_connection()
were changed together in a change set. A little later, the same changes are repeated,
but now the connection_config file is also changed. Then, in the next change set,
close_connection() is changed by itself. From only these few change sets many
patterns can be identified, for example:
e When connection_config is changed, both close_connection() and
open_connection() is also changed.
e When open_connection() is changed, close_connection() is changed.
e When close_connection() is changed, open_connection() and connec-
tion_config is sometimes changed.

Example 1 highlights how patterns can be mined from change histories, such
patterns are called evolutionary couplings as they emerge from how artifacts
change together over time. On the one hand, evolutionary couplings provide
access to the inherent knowledge that developers have of a software system.
On the other hand, these couplings may also on occasion be erroneous as a
result of coming from a human source. For example, a developer might forget
to make a required modification resulting in the corresponding change set
missing a related artifact. Alternatively, a developer might erroneously add

4

1. Introduction

Data Collection

A
\

Recommendation Engine

—

Fig. 1: The architecture of a recommender system in its most basic form

artifacts relating to different implementation tasks to the same change set, thus
erroneous couplings might be established. Throughout this thesis we will
discuss several techniques for reducing the impact of erroneous couplings,
as well as quantifying their inherent uncertainty. These contributions can be
seen as part of a greater effort which seeks to improve Recommender Systems
for Software Engineering (RSSE). The intent behind RSSE has succintly been
defined as follows:

An RSSE is a software application that provides information items es-
timated to be valuable for a software engineering task in a given con-
text. [2]

Existing RSSE aids in tasks such as recommending expert consultants [3] and
developers [4], to more code related recommendations such as identifying
buggy code [5] or code related to a change [6]. Robillard et al. found that the
architecture of an RSSE must consists of at least 3 components, as visualized
in Figure 1: (1) A data collection mechanism which provides the data un-
derlying the recommendations. (2) The recommendation engine it self which
processes input against the collected data and generates recommendations.
(3) A user interface which facilitates input for the recommendation engine
and displays the resulting recommendations. The research effort presented
in this thesis instantiates the architecture of Figure 1 in the following manner:

Example Tasks: Quantifying the impact of a change, or recommending rele-
vant parts of a code-base based on a change.

Data Collection Mechanism: The underlying data is mined from software
repositories, or more specifically, version control software such as git.
The final form of the data is a sequence of change sets capturing the
change history of a software system. In paper E we extend the data
collection to also encompass previous recommendations with their con-
text.

Paper D

(effect of history) o Recommendation History ° ------------------
I) Paper B
Recommendation Engine P . .
(rule aggregation) .
PaperA | Mining Association | |
(TARMAQ) Algorithhm Rules
A g
v :
'a N\ :
Paper C Recommendation :
(practical guidelines) - - - - - - % Query ; —_—
. 3 c— Paper E
o o SR L
multiple other com— (predicting relevance)
;
/ multiple other

Fig. 2: Each paper addresses part(s) of an RSSE

Recommendation Engine: The engine processes an input query against the
obtained change history to identify interesting patterns. The pattern
search is based on association rule mining.

User Interface: The recommendation engine accepts queries in the form of
a set of artifacts, and outputs a ranked list of relevant artifacts for that
query.

Each paper either seeks to improve the quality of the output recommenda-

tion in some manner, or explores in which scenarios we should expect a

recommendation to be accurate. Figure 2 presents the RSSE explored in this

thesis, using dashed lines to designate the part of the system each paper is
concerned with.

The remainder of this summary is organized as follows: The next section
briefly introduces association rule mining. Then in section 3-7 the problem
addressed by each paper is discussed along with findings. Finally in sec-
tion 8 we discuss the overarching issue of change granularity, and describe
our experiment architecture in section 9.

2 Primer on Association Rule Mining

Agrawal et al. introduced the concept of association rule mining as the disci-
pline aimed at inferring relations between artifacts of a data set [7]. Association
rules are implications of the form A — B, where A is referred to as the an-
tecedent, B as the consequent, and A and B are disjoint sets. For example,

6

3. (A) Mining Targeted Association Rules

consider the classic application of analyzing shopping cart data; if multiple
transactions include bread and butter then a potential association rule is bread
— butter. This rule can be read as “if you buy bread, then you are also likely to
buy butter.”

In the context of mining evolutionary coupling from historical change
sets, artifacts are not shopping items, but rather represents changes to files,
methods, classes and so on. A set of artifacts (e.g., a commit), is called a trans-
action, but is also referred to as a change set on occasion. The sequence of
transactions that naturally emerges as software evolves is called a change his-
tory. Given a change history, we can then mine association rules such as the
ones in Example 1, e.g., close_connection() — open_connection().

An association rule is however of less use if we cannot quantify its im-
portance somehow, for this purpose we have interestingness measures. For ex-
ample, the rule close_connection() — open_connection() from Example 1 has
a frequency of 2, since close_connection() and open_connection() are changed
together in two transactions. Over 40 other interestingness measures have
been introduced [8, 9].

Throughout this thesis, several aspects of association rule mining will
be explored. We will investigate how interestingness measures can be aggre-
gated to produce stronger rules, how we can effectively limit the search space
by only mining the targeted rules, how we can predict if rules are actually rel-
evant, and how various characteristics of the change history and query affect
overall behavior.

3 (A) Mining Targeted Association Rules

The first papers on association rule mining were conceived of in the context
of transactional data such as shopping carts, where the task was to uncover
patterns in what customers typically bought together. However, while the
number of possible shopping items is large, the number of possible patterns
between the items is very large. In fact, the number of possible association
rules grows exponentially with the number of unique artifacts, making it
infeasible to assess all rules [10]. Given that a is the number of unique
artifacts, the number of possible association rules is given by the function
f(a) = 3% —2%F1 4 1 [11]. Figure 3 plots the growth. With only 10 unique
artifacts the number of association rules is already 57 002. However, in a
software such as the Linux kernel we recorded over 150 000 unique changes?,
making the total number of possible association rules grow to the unimagin-
able number of 1071%%8, It is quite clear that some sort of filtering is required
for any but the smallest data sets.

I This number approximates the number of unique methods in the kernel

Number of Rules

1 2 3 4 5 6 7 8 9 10
Number of Artifacts

Fig. 3: The number of possible association rules as a function of the number of unique artifacts

Rather than mining “all rules”, initial methods focused on mining “all
frequent rules”. Frequent rule mining was first conceived in the Apriori algo-
rithm. The Apriori algorithm defines a procedure for identifying all frequent
rules through the downward closure property, where the user defines what is
“frequent” through a set threshold [10]. Here the algorithm simply uses the
fact that if a rule A — B is not frequent, neither can any extension, for ex-
ample (AUx) — B. Thus a large number of rules can be pruned from the
search space.

While Apriori was a significant step in making association rule mining
practical, it still suffered some limitations. First, the very concept of a user
supplied threshold makes it somewhat arbitrary which rules are returned.
Second, a frequency threshold also implies that “low frequency” rules are
not interesting, which completely dismisses recently added artifacts. Third,
if any large frequent rules exist, the problem is still intractable; given a rule
A — B with a number of artifacts | A U B| = N, the number of subsets of AU B
that needs to be considered before arriving at A — B is equal to 2N — 1.

In the first paper of this thesis (paper A, p.25) “Generalizing the Analysis of
Evolutionary Coupling for Software Change Impact Analysis”, we present a min-
ing algorithm where no frequency threshold is required as the returned rules
are constrained to only those that are relevant for a given task. the algorithm
TarMAQ (Targeted Association Rule Mining for All Queries) is a targeted as-
sociation rule mining algorithm especially suited for tasks such as Change Impact
Analysis (CIA) and change recommendation. The key idea behind targeted rule
mining, as first introduced by Srikant et al. [12], is to put constraints upon
which rules should be mined. A constraint might be that only rules with a
single artifact in the consequent (right hand side) should be mined, or perhaps

4. (B) Aggregating Association Rules

that only certain artifacts are allowed to occur in either the antecedent (left
hand side) or consequent. TARMAQ takes this one step further by defining a
dynamic constraint. When conceiving TARMAQ, we took inspiration from the
algorithm Rose which was introduced by Zimmerman et al. in their seminal
paper “Mining version histories to guide software changes” [6]. RosE limits
the mined rules to only those where the antecedent is equal to the change
scenario at hand (i.e., the query). For example, if a developer has changed the
methods a(), b() and ¢(), Rost only mine rules on the form a(),b(),c() — X,
where X in any single artifact which has previously changed with a(), b()
and c(). Unfortunately, RosE often fails to return any rules at all. There are
three patterns where this occurs: (1) When a new change is made, i.e., a new
artifact is introduced. (2) When a query consists of a previously unseen com-
bination of artifacts. (3) When the artifacts never has changed with anything
else. TARMAQ addresses these limitations by searching for the largest subset
of the query which has changed with something else in the past. We might
for example find that a(), b() and ¢() has never changed with something else,
but that a(), b() has. In our empirical study, we find that RosE is unable to
generate recommendations for approximately 70% of queries. For the queries
in those 70%, TARMAQ is able to generate highly relevant recommendations
65% of the time.?

4 (B) Aggregating Association Rules

Given two association rules A — X and A — Y, which one is the most rele-
vant/interesting /important? This is the problem that is addressed by weight-
ing association rules using interestingness measures. We saw previously in Ex-
ample 1 that open_connection() not always is changed when close_connection() is.
In fact, open_connection() is changed 2 out of 3 times when close_connection()
is changed, which is exactly the conditional likelihood

P(open_connection()|close_connection())

which can be calculated as follows if we consider the transactions ids where
the two methods changed:

|close_connection();zs N open_connection();zs| |{100,104,105} N {100,104} |
|close_connection ()4 B 1{100,104,105}|
{100,104}
~ 1{100, 104, 105}

265% of the queries resulted in recommendations which had a correct artifact in their top 10

This is exactly how the confidence interestingness measure of the association rule
close_connection — open_connection() is calculated. In general the confidence
of a rule A — B is defined as:
P(ANB)

P(A)

The confidence measure was part of the first two interestingness measures that
were introduced in the field, the other being the support measure. The support
of an association rule simply expresses how common it is that the artifacts
in question change together, with respect to the full change history. From a
probabilistic perspective, the support of a rule A — B is thus given by

support(A — B) = P(ANB)

confidence(A — B) = P(B|A) =

In addition to the support and confidence, over 40 other interestingness
measures has also been presented in the literature [8, 9]. Our hypothesis in
paper B “Improving Change Recommendation using Aggregated Association Rules”
is that there exists an orthogonal technique which can be used to improve the
interestingness measures given to certain association rules. The basic idea is
to interpret an association rule as a piece of evidence that the consequent is
relevant. If we for example have two rules A — X and B — X, the collective
evidence that X is relevant is higher than if we only had one of these rules.
Consider Example 2.

Example 2. Consider the following (historic) sequence of transactions:

T = {a,x}, by} {cy} {d y} {a x}]

Consider further that a developer changes the following artifacts Q = {a,b,c,d}.
A recommendation for Q given T, could then realistically be as follows (support
of each rule given in parentheses):

a—x (40%)
b=y (20%)
c—y (20%)

d—y (20%)

Notice how the artifact x is recommended higher than the artifact y, even though y
has changed on more occasions with something in Q. However, if we aggregate the
support for y and x by simply summing the support values, the situation changes:

b,c,d —y (80)
a—x (40)

The order of the artifacts now more closely matches our intuition.

10

5. (C) Configuring the Recommendation Engine

In our empirical evaluation we study the effect of association rule aggrega-
tion on 40 interestingness measures and 2 mining algorithms using change
histories from 17 software systems. Here we found that aggregation had a
positive small to large significant effect in all but two cases.

5 (O) Configuring the Recommendation Engine

A well known effect of the continued evolution of a software system is the
increasing disorder or entropy in the system: as a result of repeated changes,
the number and complexity of dependencies between parts of the code grows,
making it increasingly difficult for developers to foresee and reason about the
effects of changes they make to a system. The evolution is reflected in both
increased number of evolutionary couplings, and increased number of com-
plex couplings. As a result, parameters for rule mining may need adjustment
to cope with the changing environment. In paper C “Practical Guidelines for
Change Recommendation using Association Rule Mining” we explore the effects
of both adjustable parameters as well as the effect of different change scenar-
ios for change recommendations.

Impact of interestingness measure

Our first research question concerns which interestingness measure should
be used to rank the association rules underlying a change recommendation.
To this end we rank 1.2 million rule sets using 39 different interestingness
measures resulting in 46.8 million change recommendations. We find a clus-
ter of 11 interestingness measures that consistently achieve a higher precision
across all included software systems, they are as follows:

casual confidence klosgen example and counterexample rate
collective strength loevinger difference of confidence

leverage support descriptive confirmed confidence
confidence added value

Impact of History Filtering

When a feature is to be implemented, or a bug is to be resolved, the num-
ber of files or methods that needs to be touched may vary greatly, which in
turn results in a large variation of transactions sizes in the change history.
Larger transactions may also be due to batch license updates or refactoring.
In related work, transactions crossing certain size thresholds are typically fil-
tered out to minimize noise [6, 13-15]. For our second research question we
study the effect that such transaction filtering has on the precision of change
recommendations. What we find is that a stricter transaction filtering than

11

previously assumed has a positive impact on precision. In our selection of
software systems, we found that an optimal filtering ranged between 4 and
10, i.e., including larger transactions would negatively impact precision.

Impact of Change Set

Developers may ask for change recommendations at any time during an im-
plementations tasks. Furthermore, the scope of the task is unknown to the
recommendation engine. For example, the developer might query after mak-
ing modifications to 3 files, while in reality 3 other files must also be modified
to complete the task. At a later stage the developer has modified 2 of the rec-
ommended files and issues a new query. For our third research question we
hypothesize that the first query is harder than the latter, and we find that this
assumption indeed holds in practice. In summary our findings are as follows:

The larger the task, the harder the prediction:
Generating a recommendation for a task requiring modifications to 2
files is more difficult than generating a recommendation for a task re-
quiring modifications to 10 files. However this also depends on:

With more information, the easier the prediction:
Given a task requiring modifications to 10 files, the recommendation
will become stronger as more of the required files are changed.

Note that the first finding concerns the overall size of the implementation task
(how many artifacts needs to be changed), while the second finding concerns
progress on the task (how many artifacts has been changed so far). Thus, a
recommendations where a query has been issued after a single artifact modi-
fication, and only a single artifact is missing to complete the task, consistently
exhibits the highest precision among the possible scenarios. The interaction
between task size and task progress is further visualized in Table 1. Here,
recommendation difficulty is given on a scale from 10 to 1, with 1 being the
hardest.

Table 1: Relative impact of task progress and missing changes and their interactions. The colors
indicate the task size, as shown in the legend on the right.

missing task progress task
changes 1 2 3 4 size

10 8 5 2

9
5 4
3

= W N -

5 3
2 4
1 5

12

6. (D) The Impact of Change History Length and Age

6 (D) The Impact of Change History Length and
Age

In the same manner as paper C, paper D continues the exploration of tunable
parameters of the recommender system in Figure 2. Concretely, the paper is
dedicated to exploring the effects of history length and age on recommenda-
tions. History length here simply refers to the number of transactions that
should be considered when mining association rules, while history age refers
to the number of transactions that have occurred since rules were last mined
from the change history. To provide intuition for how varying length and age
reflects in the chosen transactions, we provide the following example:

Example 3 (History length and age). Consider the following change history,
where ty are transactions and ty is the newest and t¢ the oldest.

T = [tll t2/ t3/ t4/ t5/ t6]

Given some new query Q we must select which of the transaction in T we should
consider when generating a recommendation for Q. In the following table we have
given some examples of different settings of history length and age, and the resulting
transactions given T :

History Length History Age Transactions

1 0 [t1]

1 1 [t2]

2 2 [t3, t4]

3 3 [t4,t5, te]

6 0 [t1,t2, t3, ta, t5, te]

Summary of findings on history age

An advantage of targeted association rule mining is that association rules are
always up-to-date, i.e., they encapsulate all the available information at the
time of generation. Compare this against a non-targeted approach where “all
rules” are generated a priori, and then queried as needed. As it may be com-
putationally expensive to generate the rules in the latter approach, one may
not be able to regenerate rules immediately as new evidence/transactions
are added to the change history. In our study of history age we investigate
the effect of not using all available recent transactions for recommendations.
In short we found overwhelming evidence that such behavior is very detri-
mental to the quality of recommendations; missing a single transaction has a

13

significant effect on precision, missing 100 transactions results in a 11.5% av-
erage loss of recommendation precision. As a reference, there are on average
180 commits added to the change history of the Linux kernel every day.

Summary of findings on history length

Given that recent transactions are “good”, are the old “bad”? Should we
actively filter out transactions that reach far back into the history? Imagine
that you have changed the method M(), if the most recent transaction also
changed M() you can be pretty confident that there are highly related ar-
tifacts in that same transaction. However, if the most recent transaction is
not related to your change, neither the next one nor the next one, when do
you stop searching? If you find that M() changed 100 transactions ago, or
maybe 10000 or even 100000 transactions ago, would you use that informa-
tion? Your gut feeling perhaps tells you “no”, as those transactions must be
“outdated”. However, we found quite the opposite. Through several large
scale studies, including the Linux change history consisting of over 500 000
transactions, we found overwhelming evidence that older transactions do not
deteriorate precision. In fact, comparing recommendations for Linux using
30000 and 500000 transactions, we found that the recommendations using
the full 500 000 transactions are significantly more precise, with a large effect
size (Cliff’d delta 0.92). In essence our findings shows that the much re-
searched code decay [16] which concerns that code needs to be updated with
regards to its environment, does not directly translate to a change history de-
cay. Thus internal coupling between artifacts are either maintained through
time, or artifacts are re-factored and renamed, which automatically filters out
now un-relevant transactions.

7 (E) Predicting Relevant Recommendations

We have previously seen how a set of association rules can be sorted on their
interestingness measure values to produce a change recommendation. If the
interestingness measure “does its job”, more relevant rules will be ranked
higher than less relevant rules. But what if no rules are relevant? Or if the in-
terestingness measure does not “do its job” and ranks a series of un-relevant
rules highly? Clearly such scenarios are undesirable as it may send devel-
opers on a wild goose chase; looking for relevant code where there is none.
In paper E, “Predicting Relevance of Change Recommendations” we hypothesize
that a history aware approach, which considers earlier change recommenda-
tions to assess the relevance of a current recomendation, will be able to ef-
fectively filter (reduce) the number of false positives. Our approach consists
of training a random forest classification model on previous change recommen-

14

8. Granularity of Change Histories

dations with known relevance. The model can then be used to give a single
likelihood estimate of the relevance of new change recommendations. Inciden-
tally, this also enables automatic assessment of recommendation relevance,
thus freeing developers from having to perform such an assessment. Our
work therefore facilitates tooling which can automate the change recommen-
dation process; only notifying developers when relevant recommendations
are available. Furthermore, our approach is independent of the mining algo-
rithm which generated the recommendation, and can easily be extended to
encompass any interestingness measure.

Our classification model is built using 12 features spanning characteristics
of the query, change history and the resulting change recommendation. After
initial training, the classification model is able provide likelihood scores for
whether new (unseen) recommendations are relevant or not. Thus by varying
the threshold for when a recommendation should be considered relevant (pos-
itive result), one can find an acceptable tradeoff between true/false positives
and true/false negatives. For example, in our empirical study we found that
the trained models were able to achieve 99% precision and 27% recall with a
relevance threshold of 0.9.

8 Granularity of Change Histories

While the underlying data used in all five papers are based on change his-
tories, the granularity varies between papers. On the coarsest level, a change
history can simply consist of the files that were modified in each commit,
while a very fine change history would consist of the lines that were mod-
ified in each file. A change history consisting only of file changes has the
advantage of being completely language agnostic, while all finer-grained alter-
natives must implement some sort of language specific parsing.

In this thesis two levels of granularity is primarily explored. In paper
A and D a file granularity is used, while the other three uses a mix of file
and method granularity. Moreover, paper B also explores two variations on
these. Example 4 goes into detail on exactly how these two different levels of
granularity are extracted from the same source change sets.

Example 4 (History Parsing). Consider the following changes to the files 4.c,
B.cpp and C.yaml, which were all added to the same commit. A '+’ indicates that
a line was added, while a "—" indicates that a line was deleted. Typically, when an
addition and deletion comes in a pair, this indicates a changed line. First, in the
C file A.c, a line was changed in the method m1(int p). Secondly, in the C++
file B. cpp, a line was changed in the method m2 (int p) and a public variable was
changed in the parent class. Lastly, in the configuration file C.yaml, a single line
was changed.

15

Ac B.cpp C.yaml

int ml1(int p) { class Classl { - old_config: X
- old_line - public war_old + mnew_config: Y
+ mnew_line public wvar_new

}

+

int m2(int p) {
- old_lzne
+ new_Lline
}
}

To convert the above change set into a file level transaction we simply include all
changed files like so: {4.c, B.cpp, C.yaml}. For a more fine grained transaction,
parsing is required. We utilize SrcML which as of now supports C++,C,C# and
Java [17]. For each supported file we extract method changes, and also record
changes outside of methods as residual changes. For non supported languages we
simply record that the file was changed. The above change set therefore converts to
the following fine grained transaction: {A.c:m1, B.cpp:m2, B.cpp:@residuals,
C.yaml}

Note that class and parameter information also is encoded on artifacts to deal with
name overloading, but this information is left out of the example above for readabil-

ity.

Relation between granularity and precision

With the exception of paper E, all other papers utilize the Average Precision
(AP) measure to evaluate recommendations. In short, AP rewards ranking
correct artifacts in the top of the recommendation, i.e., order matters as op-
posed to other popular measures such as precision. With this in mind, an
observant reader might notice a drop in reported AP values when moving
from the file based change histories of paper A and D, to the method based
change histories of paper B and C. Thus it may appear as the quality of
recommendations degrades when fine grained change histories are used as
the basis for generating recommendations. However, AP values between the
two granularities should not be directly compared. In a file context, recom-
mending a correct file is always rewarded, while in a method context, rec-
ommending a correct file is only rewarded if the correct method is also rec-
ommended. While not addressed in this thesis, we envision that granularity
aware evaluation measures can be derived to provide better precision scores
in these cases. For example, if a generated recommendation is expected to

16

9. Experiment Infrastructure: EVOC

ves2json is used to export a change history from
git into json, several granularities are supported

Change History

Y

. transactions are sampled from the history, the sampling
Transaction Sampler ==~~~ can be configured to only consider certain transaction sizes

Y

from the sampled transactions, queries are then sampled,
Query Generator [~ 77 each query has a corresponding expected outcome

Y

each query can be executed using a range of
different rule mining algorithms across multiple
environment configurations, each execution

results in a recommendation (ranked list of artifacts)

Scenario Executor f-----

l

Recommendation Evaluator

F\/ O C ves29 son

generated recommendations are evaluated
---against an expected outcome across metrics
such as average precision, precision, recall, f1 etc.

Fig. 4

contain fileA:methodB(), it should be partly rewarded for recommending
fileA:methodC().

9 Experiment Infrastructure: EVOC

Throughout the thesis all presented hypothesis are empirically tested. To fa-
cilitate these empirical studies we developed the tools EVOC (EVOlutionary
Coupling) and vcs2json (Version Control System 2 JSON). vcs2json is a
command line tool written in Ruby for converting the output of git log into
machine readable json. vcs2json is able to extract the methods that were
changed in a file by comparing the Abstract Syntax Tree (AST) of the original
and modified file. The AST is generated using the tool SrcML [17]. Relating
back to Figure 1, ves2json functions as our Data Collection Mechanism. Com-
plementing vcs2json we have EVOC. EVOC is a command line tool also written
in Ruby which is able to operate on the json change histories generated by
vcs2json. Furthermore, it contains implementations of all association rule
mining algorithms and interestingness measures used throughout the thesis.
While primarily intended to be driven programmatically for experiments,
EVOC can also be driven from the command line for single queries, and can
therefore function as the Recommendation Engine and User Interface of Figure 1.

The basic idea in all studies is to emulate change scenarios given by a query

17

and an expected outcome. Conceptually, a query Q represents a set of artifacts
that a developer changed since the last synchronization with the version con-
trol system. In order to generate queries we simple sample a subset from
a transaction T, this subset (i.e., the query) emulates a developer errantly
forgetting to update the remaining artifacts of T. Thus for each query, we
can easily calculate the expected outcome as E = T — Q. In this way, we can
evaluate the ability of a recommendation engine to infer E from Q given the
source change history. EVOC facilitates running millions of change scenarios
in a convenient manner, while also supporting experiment critical tasks such
as random sampling. Figure 4 depicts our experiment architecture with de-
scriptions of each phase. Both vcs2json and EVOC can be installed using the
gem command which should come with all recent Ruby installations, e.g., gem
install vcs2json.

10 Conclusion

Change recommendation aims to improve the development process by infer-
ring the implementation task from current changes. These recommendations
may in the least reduce the time spent by developers on code navigation, and
may in some cases save hours of debugging at a later stage. In this thesis
the focus has been on utilizing a particular kind of source data, namely the
change history of software systems. Within the change histories it is possible
through association rule mining to identify relevant patterns for a set of cur-
rent changes, these patterns make up the change recommendation. Papers A
through D address various approaches for increasing the accuracy of change
recommendations, while E presents an approach for predicting whether a
recommendation is accurate/relevant, it thus complements the initial work.
The approach to change recommendation explored in this thesis differ-
entiates from more traditional change recommendation approaches based on
static or dynamic analysis [18-25]. In the case of static analysis, the poten-
tially affected artifacts of a change are identified statically, i.e., without execut-
ing code, while dynamic analysis evaluates impact by executing the software.
While static analysis typically is considered safe in the sense that all poten-
tially affected artifacts are found, such analysis often overapproximates the
impact by recommending artifacts which also are not actually affected [26].
Dynamic analysis on the other hand may under specify the impact by only
recommending artifacts related to a specific execution of the program. Both
approaches also suffer much overhead due to having to re-execute as the
software evolves [24]. Furthermore, static and dynamic analysis are typically
restricted to one programming language at a time, meaning that dependen-
cies across languages are not considered for change recommendations [27].
Change recommendation based on evolutionary coupling do not suffer these

18

References

limitations. However, accuracy of recommendations directly depend on the
quality of the change history; if developers add unrelated artifacts to the same
commit, recommendations may eventually degrade. Thus, in addition to the
future work suggested by each paper, we believe an overarching task is to
improve data quality, Possible directions may involve: (1) developer surveys
concerning their commit habits (2) commit message analysis to mark commits
which may contain multi-task (unrelated) artifacts (3) updating the change
history based on artifact renaming and deletion (4) continued work on multi-
language support for fine grained change history extraction. Furthermore,
it should be of great interest to empirically study the differences between
change recommendations based on static/dynamic analysis and those based
on evolutionary coupling. By comparing impact sets we can calculate inter-
sections and complements which can then be used to direct future research
in either approach. Integrative approaches to change recommendation using
information from both static/dynamic analysis and evolutionary coupling
should also be a worthwhile undertaking.

The research effort presented in this thesis offers approaches for improv-
ing the accuracy and practical viability of evolutionary coupling based change
recommendations. Such recommendations are inherently language agnostic
if based on file level change granularity, only requiring that the software is
version controlled. Thus industry adoption of these change recommenda-
tions is likely due to low overhead. The accuracy of recommendations can be
further improved by adding fine grained language support, which enables
heterogeneous couplings without further effort.

References

[1] M. J. Rochkind, “The source code control system,” IEEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364-370, dec 1975. [Online].
Available: http:/ /ieeexplore.ieee.org/document/6312866/

[2] M. Robillard, R. Walker, and T. Zimmermann, “Recom-
mendation Systems for Software Engineering,” IEEE Soft-
ware, vol. 27, mno. 4, pp. 80-8, jul 2010. [Online].
Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?
arnumber=5235134http:/ /ieeexplore.ieee.org/document/5235134/

[3] A. Mockus and]. D. Herbsleb, “Expertise browser,” in Proceedings of
the 24th international conference on Software engineering - ICSE '02. New
York, New York, USA: ACM Press, 2002, p. 503. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=581339.581401

[4] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, “Supporting
online problem-solving communities with the semantic web,” in

19

[6]

[9]

[10]

[11]

[12]

[13]

References

Proceedings of the 15th international conference on World Wide Web - WWW
‘06. New York, New York, USA: ACM Press, 2006, p. 575. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=1135777.1135862

N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceeding of the 28th international conference on
Software engineering - ICSE '06. New York, New York, USA: ACM
Press, 2006, p. 452. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1134285.1134349

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463228

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http://portal.acm.org/citation.cfm?doid=170035.170072

L. Geng and H. J. Hamilton, “Interestingness measures for data
mining,” ACM Computing Surveys, vol. 38, no. 3, sep 2006. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1132960.1132963

K. McGarry, “A survey of interestingness measures for knowledge dis-
covery,” The Knowledge Engineering Review, vol. 20, no. 01, p. 39, 2005.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in International Conference on Very Large Data Bases (VLDB), 1994,
pp. 487-499.

J. Azé and Y. Kodratoff, “Evaluation de la résistance au bruit
de quelques mesures d’extraction de régles d’association.” in
Extraction et Gestion des Connaissances (EGC), vol. 1, no. 4. Hermes
Science Publications, 2002, pp. 143-154. [Online]. Available: http:
/ /dblp.uni-trier.de/rec/bib/conf/f-egc/AzeK02

R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

A. T. T Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1324645

20

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

References

A. Alali, “An Empirical Characterization of Commits in Software Repos-
itories,” Ms.c, Kent State University, 2008.

H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 933-969, oct 2013. [Online].
Available: http://link.springer.com/10.1007 /s10664-012-9233-9

S. Eick, T. L. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,”
IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12,
2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=895984

M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code:
A Tool Demonstration,” in IEEE International Conference on Software
Maintenance (ICSM). IEEE, sep 2013, pp. 516-519. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/ 6676946 /

B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613-646, dec 2013. [Online]. Available:
http:/ /doi.wiley.com/10.1002/stvr.1475

L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change impact
analysis: a control call graph based technique,” in 12th Asia-Pacific Soft-
ware Engineering Conference (APSEC’05). 1EEE, 2005, p. 9 pp. [Online].
Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?
arnumber=160714%http:/ /ieeexplore.ieee.org/document/1607149/

L. Huang and Y.-T. Song, “Precise Dynamic Impact Analysis with
Dependency Analysis for Object-oriented Programs,” in 5th ACIS
International Conference on Software Engineering Research, Management
& Applications (SERA 2007). 1EEE, aug 2007, pp. 374-384. [On-
line]. Available: http://ieeexplore.ieee.org/document/4721315/http:
/ /ieeexplore.ieee.org/document/4296961/

L. Hattori, D. Guerrero, J. Figueiredo,]. Brunet, and J. Dam,
“On the Precision and Accuracy of Impact Analysis Techniques,” in
Seventh IEEE/ACIS International Conference on Computer and Information
Science (icis 2008). 1EEE, may 2008, pp. 513-518. [Online]. Available:
http:/ /ieeexplore.ieee.org/document /4529870 /

M. Petrenko and V. Rajlich, “Variable granularity for improving
precision of impact analysis,” in 2009 IEEE 17th International Conference

21

[23]

[24]

[25]

[26]

[27]

References

on Program Comprehension. IEEE, may 2009, pp. 10-19. [Online].
Available: http:/ /ieeexplore.ieee.org/document /5090023 /

X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change Impact
Analysis Based on a Taxonomy of Change Types,” in Computer Software
and Applications Conference (COMPSAC). IEEE, jul 2010, pp. 373-382.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5676283

J. Law and G. Rothermel, “Whole Program Path-Based Dynamic Impact
Analysis,” in International Conference on Software Engineering (ICSE).
IEEE, 2003, pp. 308-318. [Online]. Available: http://dl.acm.org/citation.
cfm?id=776816.776854

T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proceedings
of the 27th international conference on Software engineering - ICSE ’05.
New York, New York, USA: ACM Press, 2005, p. 432. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=1062455.1062534

D. W. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“ORBS and the Limits of Static Slicing,” in International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
2015, pp. 1-10. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2635868.2635893

A. R. Yazdanshenas and L. Moonen, “Crossing the bound-
aries while analyzing heterogeneous component-based software
systems,” in IEEE International Conference on Software Main-
tenance (ICSM). IEEE, 2011, pp. 193-202. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSM.2011.6080786http:/ /ieeexplore.
ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=6080786

22

Part 11

Papers

23

Paper A

Generalizing the Analysis of Evolutionary Coupling
for Software Change Impact Analysis

Thomas Rolfsnes, Stefano Di Alesio, Razieh Behjati,
Leon Moonen and Dave W. Binkley

Accepted for publication in the main research track of the 23rd IEEE
International Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 14-18, 2016.

(© 2016 IEEE
The layout has been revised.

1. Introduction

Abstract

Software change impact analysis aims to find artifacts potentially affected by a change.
Typical approaches apply language-specific static or dynamic dependence analysis,
and are thus restricted to homogeneous systems. This restriction is a major drawback
given today’s increasingly heterogeneous software. Evolutionary coupling has been
proposed as a language-agnostic alternative that mines relations between source-code
entities from the system’s change history. Unfortunately, existing evolutionary cou-
pling based techniques fall short. For example, using Singular Value Decomposition
(svDp) quickly becomes computationally expensive. An efficient alternative applies
targeted association rule mining, but the most widely known approach (ROSE) has
restricted applicability: experiments on two large industrial systems, and four large
open source systems, show that ROSE can only identify dependencies about 25% of
the time.

To overcome this limitation, we introduce TARMAQ, a new algorithm for mining
evolutionary coupling. Empirically evaluated on the same six systems, TARMAQ
performs consistently better than RosE and svb, is applicable 100% of the time, and
runs orders of magnitude faster than svb. We conclude that the proposed algorithm
is a significant step forward towards achieving robust change impact analysis for
heterogeneous systems.

1 Introduction

As a software system evolves, the amount and complexity of interactions in
the code grows. For a developer, it therefore becomes increasingly challeng-
ing to be in control of the impact of a change made to the system. One
potential solution to this problem, change impact analysis [1-4], aims to find
artifacts (e.g., files, methods, classes etc.) affected by a given change. This
knowledge can then be used either as direct feedback to the developer, or as
the basis for another down-stream task such as test-case selection and priori-
tization.

Traditionally, change impact analysis has been performed using static or
dynamic dependence analysis (e.g., by identifying the methods that call a
changed method). One advantage of such approaches is that they are consid-
ered safe, as all potentially affected artifacts are found [5]. However, in recent
years there has been an investigation of alternative approaches. This search is
motivated, in part, by limitations in existing techniques. For example, static
and dynamic dependence analysis are generally language-specific, making
them unsuitable for the analysis of heterogeneous software systems [6]. In
addition, they can involve considerable overhead (e.g., dynamic analysis’
need for code-instrumentation), and tend to over-approximate the impact of
a change.

27

Paper A.

One alternative is to identify dependencies through evolutionary coupling.
Such couplings differ from the ones found through static and dynamic de-
pendence analysis, in that they are based on how the software system has
evolved over time. Using this information in essence attempts to tap into the
developer’s inherent knowledge of the inner workings of the system. This
knowledge can manifest itself in several ways, for example through commit-
comments, bug-reports, context-switches in an IDE etc. In this paper we
consider co-change as a basis for establishing evolutionary couplings. Co-
change information can be extracted from a project’s version control system,
its issue tracking system, or both, depending on how the project maintains
its software revision history.

The goal of evolutionary coupling is to mine connections between entities
in the software from the co-change data. While several levels of granularity
are possible, in this paper we focus on connections at the file level. Observe
that this is without loss of generality, as the mining algorithms are agnostic
to the choice of granularity. Provided that suitably fine-grained co-change
data is obtained, the algorithms will just as well relate methods or variables
as files in a system.

There are several options to mine evolutionary coupling from co-change
data. For example, although it is computationally expensive, Singular Value
Decomposition (svD) can be used to form clusters of files. These clusters
can then be used to predict files likely to change together [7]. A consider-
ably faster approach is based on Srikant et al.’s targeted association rule mining
algorithm [8].

However, the off-the-shelf use of this algorithm has a significant limita-
tion causing a lack of applicability (a notion formalized in section 4). Consider
Rosk, which uses the algorithm for software change recommendations [9].
Experiments with ROSE on six large systems show that it can only find evo-
lutionary couplings about 25% of the time.

This paper presents TARMAQ, a new generalized algorithm for targeted
association rule mining that overcomes this limitation. Moreover, we make
the following additional contributions: we classify the limitations of existing
algorithms, and we empirically evaluate the performance of TARMAQ on two
industrial software systems and four open source software systems. We find
that TARMAQ performs consistently better than two popular alternatives, is
applicable 100% of the time, and runs orders of magnitude faster than svb.
We conclude that the new algorithm is a significant step forward towards
achieving robust change impact analysis for heterogeneous systems.

28

2. Research Questions

2 Research Questions

Our research is driven by a desire to conduct impact analysis on large hetero-
geneous systems via evolutionary coupling. Despite its limited applicability,
targeted association rule mining has shown promise in addressing software
engineering problems. Combined, these two observations lead us to investi-
gate the following research questions:

RQ1 What are the limitations of existing techniques to analyse evolutionary
coupling?

RQ2 Can we devise an alternative technique that does not suffer from these
limitations?

RQ3 How well does the best alternative perform in comparison to the state-
of-the-art?

The remainder of the paper is organized as follows: section 3 defines some
terminology and provides background on the use of association rule min-
ing. The limitations of existing algorithms (RQ1) are discussed in section 4.
In section 5 we address RQ2 by introducing TARMAQ, a new algorithm for
targeted association rule mining algorithm in software engineering context.
We address RQ3 by empirically evaluating TARMAQ and state-of-the-art al-
gorithms on a series of large software systems in Sections 6 — 8. We discuss
related work in section 9, and we conclude in section 10.

3 Background

Agrawal et al. introduced the concept of association rule mining as the dis-
cipline aimed at inferring relations between entities of a dataset [10]. The
relations, called association rules, are identified from a collection of transac-
tions where each transaction is a subset of the entities. For example, consider
the classic application of analyzing shopping cart data: if multiple transac-
tions include bread and butter then the corresponding association rule would
be bread — butter. This can be read as “if you buy bread, then you are also likely
to buy butter”.

In the context of evolutionary coupling for software systems, the entities
are the files of the system and the collection of transactions is the change
history H of the system. Note that, in general, entities in the system can
be considered at other levels of granularity, such as method- or procedure-
level. Each transaction T € H is a commit of changed files, i.e., a transaction
includes the set of files that were either changed or added while addressing
a given bug or feature addition (creating a logical dependence [11]).

29

Paper A.

Finally, an association rule is an implication of the form A — B, where A
and B are disjoint, A is referred to as the antecedent, and B is referred to as
the consequent. In our use, the association rule A — B denotes that “if the files
in A change, then the files in B are also expected to change”.

Several measures are used to reason about the rules. First, the frequency,
denoted ¢, of association rule A — B is the number of transactions in H
where items in A and B change together:

¢(A—B)=|{TeE€H: AUBC T} (A.1)

Usually, the frequency of a rule is normalized by dividing by the number of
transactions. For this purpose, the support, denoted ¢, of a rule A — B is
defined as the frequency of a rule divided by the number of transactions in
the history:

o(A - B) & —"’(A’H_’) B)

Intuitively, higher support for a rule means that it is more likely to hold. Al-
ternatively, rules with low support identify relations that rarely occur. For
this reason, a minimum threshold on support is often used to filter out unin-
teresting rules.

The final measure used, confidence, denoted x, measures the reliability
of the inference made by a rule. The confidence of a rule is defined as its
frequency divided by the number of transactions that contain its antecedent.

$(A — B)
{TeH:ACT}

(A.2)

k(A — B) = (A.3)
Confidence measures the ratio of the transactions in which the files in A and
B are present, to the transactions where files in A are present. Consequently,
the higher the confidence of a rule A — B, the higher the chance that when
the files in A are modified, then the files of B are also modified.

As originally defined [10], association rule mining generates rules that
express patterns in a complete data set. However, some applications can
exploit a more focused set of rules. Targeted association rule mining [12] is a
refinement that focuses the generation of rules on a particular query supplied
by the user. It does so by removing all transactions that are not related to
the query from the database of transactions (the change history H in our
context), which results in a dramatic reduction of execution time [12].

4 Problem Description

This section characterizes a key limitation of applying off-the-shelf targeted
association rule mining to the problem of providing developer change recom-
mendations. As described earlier, the technique removes all transactions that

30

4. Problem Description

are not related to the query from the database of transactions used for rule
generation. However, this strategy can often filter away all the transactions,
leaving an empty database, and rendering the technique incapable of pro-
ducing a recommendation. Before considering the causes of this limitation,
we formalize the notion of applicability:

Definition 1 (Applicability). Given a history H and a query Q, a targeted asso-
ciation rule mining technique T is said to be applicable to query Q if the filtered
history after removing all transactions not related to Q is non-empty. Conversely,
we say that T is not applicable when the filtered history for Q is empty.

It turns out that there are two patterns that lead to a lack of applicability
of the existing techniques. The first pattern is when a file in the query has
never occurred before in any transaction of the history. The second pattern is
a query of previously seen files that nonetheless have not been seen together
as a proper subset of a single transaction. The second pattern requires a
proper subset because a transaction that exactly matches the query involves
no other files, and thus there are no other files to recommend. Therefore,
nothing can be learned from such a transaction.

To illustrate the two patterns, let a, b, ¢, d and e represent five source files
belonging to an evolving software system. Suppose that the version history
of the system, H, contains three transactions:

H =1[{a,b,c} {ad} {cd}]

Then, the queries g1 = {e,d} and g, = {a, ¢, d} exemplify the two patterns for
which existing targeted association rule mining techniques are not applicable.
g1 includes a new file e which does not occur in any transaction of H. In
this case techniques such as Rosk [9] fail to provide any recommendation.
In the second example, the files in g, have all occurred in the history, but
never together. Here again Rosk fails to provide a recommendation. In the
following, we refer to these queries as unseen queries because they include a
pattern that is unseen in the change history.

The opposite of an unseen query is a seen query. For such queries ROSE
is able to provide a recommendation. Two examples of seen queries are
g3 = {a} and g4 = {a,b}. Because there is at least one transaction in # that
is a proper superset of these queries, ROSE can produce a result.

To find out to what extent this limitation affects the applicability of Rosk
and similar approaches, such as that of Ying et al. [13], we studied the distri-
bution of unseen and seen queries in four open source repositories, namely,
Git!, Apache HTTP Server?, Linux Kernel3, MySQL4 as well as two software

! https://www.openhub.net/p/git

2 https://www.openhub.net/p/apache
3 https://www.openhub.net/p/linux
* https://www.openhub.net/p/mysql

31

Paper A.

o _
2 A B Seen Queries
[] Unseen Queries
o © |
% o
<
[
(&]
o ¥ |
o o
N
] - -
O -
o
cisco git httpd km linux mysq|

Software Systems

Fig. A.1: The percentage of queries that were found to be seen or unseen in the change histories
of each of the software systems.

repositories from our industry partners, Cisco Norway® and Kongsberg Mar-
itime (KM)®. The results are reported in Figure A.1 7. The high percentage
of unseen queries in all six cases implies that traditional targeted association
rule mining cannot produce results a significant amount of the time.

We can answer our first research question, RQ1, in the affirmative; it
is possible to characterize the limitations of existing evolutionary coupling
based techniques. Specifically, the two patterns described in this section pre-
vent current techniques from returning a result. This is because these tech-
niques use an over-restrictive history filtering, which only keeps transactions
where all the files in the query are present. This suggests the need for alter-
native and more relaxed rule filtering methods.

5 Proposed Solution: Tarmaq

This section presents TARMAQ, a novel algorithm implementing Targeted As-
sociation Rule Mining for All Queries. TARMAQ takes as input a transaction
history H and a query Q, and generates a ranked list F of files where higher
ranked files are more related to Q. As shown in Algorithm 1, TARMAQ con-
sists of three steps: transaction filtering, rule creation, and finally the ranked
list creation.

5 http://www.cisco.com/web/NO/index.html

 http://www.km.kongsberg. com/

"The study re-enacted the change history,basically using commits as a query over the change
history up to the point that the commit was made.

32

5. Proposed Solution: TARMAQ

Algorithm 1: TARMAQ

Require: The history: H, and the query: Q
Ensure: A ranked list of files: F

1 {Filtering Step}

2 k<0

3 H F O {H f the filtered history}

4 forall T € H do

5 if |[QNT| =k then
6 Hf — Hf uU{T}
7 elseif |QNT| > k then
8 k<« |QNT]|
9 Hf «— {T}
10 {Rule Creation Step}
11 R + @ {R: the set of rules}
12 forall T € Hy do
13 Q<+ QnNT
14 forallxe T\ Q' do
15 R+ RU{Q — x}
16 update(c(Q" — x))
17 update(x(Q' — x))
18 {Ranked List Creation Step}

—_
O

Rs < sort(R) {sorts using ¢ and «}
for all i € [1.. length(Rs)] do

21 Fli] < consequent(R;|i])

22 return F

N
(e}

Given a query Q = {filey, filey, ... file,}, the transaction filtering extracts
from H those transactions that have the largest intersection with Q. More
formally, transaction T € H is kept if |T N Q| = k, where k is the size of the
largest subset of Q seen in the history. In contrast, Rose keeps only those
transactions where Q C T. Revisiting the example from section 4, for g, the
filtering removes none of the three transactions as each includes two of the
files from g,. However, for g3 the final transaction, {c,d}, is removed by the
filtering because {a} N{c,d} = @. After filtering, the second step is rule
creation. TARMAQ generates rules of the form Q' — x, where x represents
a single file and Q' is a subset of Q with |Q’| = k. Such a rule is created
if and only if there exists a transaction T € H such that Q' U {x} C T.
Considering the example from section 4, TARMAQ generates three rules for
gs: {a} — {b}, {a} — {c}, and {a} — {d}. Note that when H contains
at least one transaction T such that Q C T, TARMAQ generates the same set
of rules as Rose. However, unlike Rosg, when Q is not contained in any T,

33

Paper A.

TArRMAQ generates rules whose antecedent is as close to Q as possible. In
contrast, ROsE fails to generate any rules. In the final step TARMAQ produces
the ranked list & of recommended files. This is done by first sorting on
the support of each rule, and in the case of ties (which are likely) on the
confidence of each rule. The final list of files is then produced by mapping
each rule to its consequent.

The rational for having a single file as the consequent includes both efti-
ciency and utility. More general rules would involve Q" implying that a set
of files should be included rather than a single file. Algorithms for generat-
ing such rules are computationally more expensive and may require a search
through all possible subsets, which is an exponential computation and thus
quickly becomes a performance concern. Furthermore, there is no loss of
utility because in a software context it is sufficient to recommend files in-
dependently. The independence of software entities was exploited by Rosk,
which also produces singleton consequents [9].

By looking for transactions that contain subsets of Q instead of Q itself,
we obtain some recommendation evidence in the absence of transactions in-
volving all of Q. For example, consider the situation where an engineer has
modified files a,b, and c to fix a bug, but errantly forgot to modify file x.
In this case, we want to mine the rule {a,b,c} — x with high confidence.
However, this is not possible if ¢ is new or has not been previously changed.
Nevertheless, assuming that 4, b, and x have frequently changed together
before, TARMAQ produces the rule {a,b} — x with high confidence. Thus,
in answer to RQ2, using the largest intersection, we can develop a technique
that does not suffer from a lack of applicability.

6 Evaluation

The evaluation compares TARMAQ, ROSE, and svD by emulating a developer’s
need for a change-recommendation tool. To facilitate the three experiments
we assume that the files of a transaction are related and evaluate performance
by partitioning transactions into a query and an expected output. To describe
the evaluation we first describe the subject systems used as test subjects in
the experiments. We then detail the query generation process, the query
evaluation, and finally, the implementation and execution environment.

6.1 Subject Systems

To assess the algorithms in a variety of conditions, we selected six systems
having varying size and frequency of commits. Two of these are systems from
our industry partners, Kongsberg Maritime (KM) and Cisco Norway. KM is
a leading company in the production of systems for positioning, surveying,

34

6. Evaluation

Table A.1: Characteristics of the evaluated software systems

Software System Unique Avg. tx. size History covered by
Files (# files) 10 000 transactions

MySQL 21854 10.1 2.34 years
Git 2141 1.9 4.2 years
Apache HTTP Server 7905 6.9 7.18 years
Linux Kernel 9021 2.2 0.15 years
Kongsberg Maritime 35111 5.1 15.97 years
Cisco Norway 41701 6.2 1.07 years

Software System Languages used*

MySQL C++ (54%), C (19%), JavaScript (17%), 23 other (10%)

Git C (45%), shell script (35%), Perl (9%), 14 other (11%)

Apache HTTP Server XML (56%), C (32%), Forth (8%), 19 other (4%)

Linux Kernel C (94%), 16 other (6%)

Kongsberg Maritime = C++, C, XML, other build/config

Cisco Norway C++, C, C#, Python, Java, XML, other build/config

* language information from http://www.openhub.net,
percentages for the industrial systems are not disclosed.

navigation, and automation of merchant vessels and offshore installations.
Cisco Norway is the Norwegian division of Cisco Systems, a worldwide
leader in the production of networking equipment. We validated TARMAQ
in the common software platform KM uses in applications in the maritime
and energy domain, and in the Cisco software product line for professional
video conferencing systems. The other four systems are part of well known
open-source projects, namely Apache HTTP Server, Linux Kernel, MySQL,
and Git. Table A.1 summarizes descriptive characteristics of the software
systems used in the evaluation. The table shows that the systems we selected
vary from medium to large size, with up to forty thousand different files
committed in the transaction history. Furthermore, the oldest transactions
from the system histories are fifteen years old in the case of KM. Note that
all the systems are heterogeneous, i.e., they are implemented in more than a
single programming language.

A key aspect of each system is the way its authors interact with the ver-
sion control system. This usage typically depends on the software process
adopted by the developer’s organization. For example, agile teams tend to
frequently commit small incremental changes to the project artifacts follow-
ing the “commit early, commit often” philosophy. On the other hand, in more

35

Paper A.

mysql - P99
linux -
km — C* Q2 Q3 99
httpd »ﬁc P99
git4+ Q1Q2 Q3
cisco mﬁc 599

T T T T T T T T T T T T
3 45 7 10 15 30 60 100 1000 10000
Commit size distribution (log10)

- -

Fig. A.2: Distribution of commit sizes for the different cases

traditional software processes developers might commit only on a monthly
basis, with each commit changing a large number of files. To gain some un-
derstanding of the commit patterns used, Figure A.2 shows violin plots of
the six software systems. For each plot the x-axis shows commit size using
a log scale. Each violin includes quartile markers, Q1, Q2, and Q3, and a
marker for the 99" percentile, p99. From these plots certain patterns emerge.
For example, Linux and Git are dominated by small commits while MySQL
and KM include considerably more larger commits. This variety of patterns
is relevant to our evaluation.

6.2 Determining Transactions

While our approach is not dependent on the versioning system used, adap-
tors still need to be written for each versioning system. These adaptors take
a change-history from a specific versioning system as input, and output a set
of transactions conforming to a common format. Our prototype tool uses this

36

6. Evaluation

common format.

Depending on the versioning system however, it might not always be per-
fectly clear what constitutes a “transaction”, as defined as “a set of related
changes”; For each versioning system, a best approximation should be made.
For example, in the Concurrent Versions System (CVS), changes are not ex-
plicitly grouped into commits, and it is therefore necessary to consider time-
stamps (e.g., sliding time windows), log messages and developer identity to
define transactions [14].

Another aspect that needs to be considered is if previous commits can
be modified (i.e., history rewriting). If this is not possible in the versioning
system, a developer who has forgotten to commit a relevant file needs to
make an additional commit. Again, a sliding time window is a potential
solution here.

For this paper, all chosen software-systems use the Git version control
system.8 Our adaptor for Git treats the files changed in one commit as one
transaction. Merge commits however, are ignored through the use of the
‘—no-merges’ option. Additionally it should be noted that Git supports his-
tory rewriting through the ‘—amend” option and the ‘rebase’ command. These
commands obviate the need for employing time windows in the Git adaptor.
Finally, it should also be noted that only transactions from the main branch
are considered.

6.3 Query Generation Process

Conceptually, a query Q represents a set of files that a developer changed
since the last synchronization with the version control system. The key idea
behind our evaluation is to generate, starting from a transaction T, a set of
queries that emulate a developer errantly forgetting to update some subset
of T.

The first step in the process is to select a set of transactions. The distri-
bution plots are clearly skewed towards small commits. In fact, 75% of the
commits have ten or fewer files while 90% have thirty or fewer files. For this
reason, and because we assume that larger commits often consist of unrelated
tiles committed together because of a directory reshuffle or license change,
we follow the work of Zimmerman et al. [9] and remove transactions of more
than thirty files.

From the remaining commits we sample forty commits for each transac-
tion size between two and thirty. We use the resulting 1160 transactions to
form the queries used to investigate how the three algorithms behave over a
range of transaction sizes.

To mimic a developer forgetting files, we partition each of the 1160 trans-
action T into a non-empty query Q and a non-empty expected outcome

8With the exception of Kongsberg Maritime, where a special adaptor was written.

37

Paper A.

E = T\ Q. In this way, we can evaluate the ability of an algorithm to in-
fer E from Q. To investigate a range of query sizes, we generate one query
for each size from one to |T| — 1. For example, for a transaction of size 4,
we generate three queries of size 1, 2, and 3, whose expected outcomes thus
have sizes 3, 2 and 1, respectively. Note that we do not sample commits of
size one because they cannot be split into a query and expected outcome.

6.4 Query Evaluation

Evaluating the generated queries requires executing each query and then
comparing the resulting ranked lists. To execute each query Q that was gen-
erated from transaction T, we use the 10 000 commits prior to T as the history.
In these experiments 10 000 represents a balance between to short a history,
which would lack sufficient connections, and to long a history, which is inef-
ficient and can even be misleading when previously connected files are not
longer connected.

Comparing the ranked lists produced by TARMAQ, ROSE, and svD requires
an appropriate performance measure. Prior work on association rule mining
typically uses precision and recall as performance metrics. The precision of a
recommendation is the ratio of the number of correct items recommended to
the total number of items recommended. The recall of a recommendation is
the ratio of the number of correct items recommended to the total number of
correct items.

As a practical consideration, while precision and recall are designed for
unordered results a recommendation tool’s output is a ranked list. Consider
the difference between a single correct recommendation occurring at the be-
ginning of the list and a single correct recommendation occurring further
down the list. These two have the same precision and recall. However, the
correct recommendation at the beginning of the list is far more valuable, be-
cause it is far more likely to be considered. This is a well known phenomenon
in information retrieval where, for example, internet searchers rarely look
past the first ten results [15].

A more appropriate performance measure in the context of a ranked list
is the average precision (AP). For query Q producing ranked recommendation
list R, AP is defined as

R|
AP(Q,R) £ Y P(k) * Ar(k) (A.4)
k=1

where P(k) is the precision calculated on the first k files in the list, (i.e., the
precision@k) and Ar (k) is the change in recall calculated only on the k — 1t
and k™ files, i.e., the fractional increase in true positives compared to the

38

7. Results

previous rank. Table A.2 illustrates the computation of AP, P(k), and Ar(k)
given the ranked list [c,q, f, g,d] and the expected outcome {c,d, f}.

Finally to compare the performance of two tools, we use the mean average
precision (MAP) computed over a set of queries. A tool producing a higher
MAP value is, on average, producing better results. In addition, we compare
the tools based on the total wall-clock time taken to execute a collection of
queries.

6.5 Implementation and Execution Environment

We implemented all three algorithms in RUBY, using LAPACKE C to imple-
ment svD through the NMatrix gem [16]. Our implementation is open-source
and can be found online.” We performed the experiment executing the algo-
rithms, one at a time, on a c4.2xlarge Amazon EC2 instance.1?

7 Results

This section addresses RQ3 by reporting objective measures of the data from
our evaluation. Our interpretation of the data can be found in section 8. The
results are organized according to the following questions:

RQ3.1 What is the overall performance of all algorithms?
RQ3.2 What is the performance on seen queries of all algorithms?
RQ3.3 What is the performance on unseen queries of TARMAQ and svD?

RQ3.4 Is there a significant difference in performance on seen and unseen?

 https://bitbucket.org/evolveIT/tarma
10 https://aws.amazon. com/

Table A.2: Example of average precision calculation

Consider as relevant files: ¢, d, f

Rank (k) File P(k) Ar(k)
1 c 1/1 1/3

2 a 1/2 0

3 f 2/3 1/3

4 g 2/4 0

5 d 3/5 1/3

AP=1/1%x1/3+1/2%042/3%1/3+2/4%x0+3/5%x1/3 ~0.75

39

Paper A.

e _—
@ | J» !
o 3 ‘
c ‘
o
n
= ©
8 S
o
S
S I
[
>
<
N
o
o
o
T T I
rose svd tarmaq
Algorithms

Fig. A.3: Overall distribution of average precision for each algorithm

RQ3.5 How do the algorithms perform on the individual software systems?

While not unexpected, we found that the average precision distribution
for the different software systems and algorithms were not normally dis-
tributed, we therefore use the Friedman Test, a non-parametric test for differ-
ences between several samples.

7.1 Overall Performance on Average Precision (RQ3.1)

The overall performance implies what is to be expected of each algorithm
when the type of query is unknown (seen vs unseen), which would normally
be the case. We test the following hypothesis:

Hp The average precision distribution generated by each algorithm is the
same.

H; The average precision distribution generated by each algorithm is differ-
ent.

Figure A.3 shows the overall distribution of average precision for each of
the investigated algorithms. Here it is clear that Rose cannot produce results
for a significant number of the queries, and therefore ends up with a high
percentage of 0 AP values. Furthermore we see that TARMAQ has a higher
median than svp and also a larger interquartile range.

40

7. Results

A Friedman rank sum test!! of the distributions yields a p-value < 0.00001,
and we therefore reject Hy and conclude that there is a significant difference
between the algorithms.

Since we accept Hj, we can do a post-hoc test to actually look at which
algorithms were different, to this end we use individual Wilcoxon signed
rank tests!2. Since we do multiple comparisons (tests) we have to use Bon-
ferroni adjustment on what should be considered significant p-values. With
three factor levels (three algorithms) it is sufficient with two directional tests
to establish TARMAQ’s place in the ordering of algorithms. The Bonferroni
adjustment is given by dividing the desired alpha level by the number of
performed tests, we thus get an adjusted alpha of 0.05/2 = 0.025.

We have the following hypotheses:

HI'R The average precision distribution generated by TARMAQ is less than
that of ROSE.

HI'R The average precision distribution generated by TARMAQ is greater
than that of RosE.

HI'S The average precision distribution generated by TARMAQ is less than
that of svp.

H{YS The average precision distribution generated by TARMAQ is greater
than that of svp.

In Table A.3 we provide the p-values of the two Wilcoxon tests. In both
cases we can safely reject the null-hypothesis, and conclude that on overall,
TARMAQ performs better than both Rosk and svp.

7.2 Overall Performance on Time (RQ3.1)

To investigate the execution cost of each algorithm, we perform the same
analysis as we did for average precision. The overall execution time dis-
tributions can be found in Figure A.4. At once we see that svD have an

1 We used friedman.test in R.
12 We used wilcox.test in R with: alternative = ‘greater’, paired = TRUE.

Table A.3: p-values for Wilcoxon pairwise multiple comparisons

TARMAQ conclusion

Rose p-value < 0.00001 | reject Hj "R

svD p-value < 0.00001 | reject Hj¥®

41

Paper A.

8
o |
O
@ i
[}
=
F o |
c <
9
: 1
[&]
(0]
x i
w o | i
N i
o —8 S — — s
T T I
rose svd tarmaq
Algorithms

Fig. A.4: Overall distribution of execution time for each algorithm. Note that Rose executes
faster because it does not produce results in all cases.

obviously larger spread in execution times than Rose and TARMAQ, and a
Friedman rank sum test does indeed show significant difference between the
distributions (p-value < 0.00001). The more interesting analysis is to compare
Rosk and TARMAQ, as they have a much closer distribution. A Wilcoxon test
showed that RosE was significantly faster than TARMAQ (p-value < 0.00001), a
large part of this however, might be attributed to the large number of queries
where Rosk does not produce results (cannot find relevant transactions), and
therefore does not need to perform any rule creation. The mean execution
time for TARMAQ was 0.09 s, 0.003 s for Rosk, and 17.5 s for svbp.

7.3 Performance on Seen Queries (RQ3.2)

In this section and in subsection 7.4 we look at algorithm performance on
either seen or unseen queries respectively. This division gives us a better
view into how the two types of queries differ.

In Figure A.5 we provide the distribution of average precision on all seen
queries for all algorithms. We can see that, as expected, Rose and TARMAQ
have equal distributions on seen queries, while svD performs worse. A Fried-
man test on the distributions was found significant (p-value < 0.00001), i.e.,
there is a difference between the algorithms. A test of significant difference
between RoskE and TARMAQ is unneeded, as they produce exactly the same
result here, but a Wilcoxon test of TARMAQ and svD was found significant
(p-value < 0.00001). We can therefore conclude that both TARMAQ and RoOSE

42

7. Results

1.0

0.8

0.4

Average Precision

0.2

0.0

I I I
rose svd tarmaq

Algorithms

Fig. A.5: Distribution of average precision on seen queries for each algorithm

perform better than svD on seen queries.

7.4 Performance on Unseen Queries (RQ3.3)

When a query consists of files that have never changed together before, we
consider the query to be unseen. Since ROSE cannot produce recommenda-
tions on unseen queries, only TARMAQ and svD are evaluated in this section.
With only two subjects, we can use the Wilcoxon test directly without Bon-
ferroni correction.

Figure A.6 shows a boxplot of the average precision distribution of TAR-
MAQ and svD on unseen queries. A Wilcoxon test on TARMAQ and svD dis-
tributions proved to be significant (p-value < 0.00001), we can therefore con-
clude that TARMAQ performs better than svD on unseen queries.

7.5 Seen vs. Unseen Queries (RQ3.4)

In this section we investigate the difference in performance on seen and un-
seen queries, i.e., if the distributions shown in Figure A.5 and Figure A.6
significantly differ. To get a good overview we have plotted the overall dis-
tributions in Figure A.7. To compare the distributions we use an unpaired
Wilcox test, as the query population obviously is different for the seen and
unseen queries. The test yields a p-value < 0.00001, and we can therefore
conclude that unseen queries are significantly harder than the seen queries.

43

Paper A.

8ohd/Ah Pchegd n

ros ad va
SWdgptr

Fig. A.6: Distribution of average precision on unseen queries for each algorithm

o]
-
@ |
o
c
ie]
(2]
= ©
8 S
o
g !
o :;- . 3
() i
= :
< :
N !
o
o | :
o
T T
Seen Unseen
Type of Query

Fig. A.7: Distribution of average precision on seen and unseen queries

44

8. Discussion

Table A.4: The mean average precision of each algorithm on each software system

Rost svD TARMAQ | Friedman p-value
cisco 0.2063 0.1387 0.3864 < 0.00001
git 0.1042 0.1183 0.2412 < 0.00001
httpd 0.1035 0.2194 0.3049 < 0.00001
km 0.1711 0.3774 0.3842 < 0.00001
linux 0.1300 0.5496 0.3367 < 0.00001
mysql 01256 02062 0.2958 < 0.00001

7.6 Performance of Algorithms on Individual Systems (RQ3.5)

In this final results section we look closer at how performance varies over
the individual software systems. To this end we present the mean average
precision for each software system and algorithm combination in Table A.4.
The last column in Table A.4 lists the p-value for a Friedman test of equal
distributions between the algorithms. In all cases the p-value was found
significant. To determine which algorithm did the best for each software
system, we performed post-hoc Wilcoxon tests on each algorithm pair. The
best performing algorithm is shown in bold. For all software systems, with
the exception of Linux, TARMAQ is the top performer.

8 Discussion

In this section we will discuss some implications of the results presented in
section 7.

8.1 Overall Performance on Average Precision (RQ3.1)

To answer RQ3.1 we measured the overall performance of Rosg, TARMAQ
and svD over all software systems, regardless of the type of query (seen vs
unseen). We argue that this is the most realistic comparison, as it is hard to
know the query type a priori. We therefore claim that a good evolutionary
coupling based algorithm for change impact analysis should be agnostic to
the type of query. The same argument also holds in terms of queries on
different software systems. While there might be systems where evolutionary
couplings are harder to analyze because of developer practices, the general
algorithm should not be too sensitive to specific software systems.

45

Paper A.

8.2 Overall Performance on Time (RQ3.1)

When implementing a change recommendation engine in an industrial pro-
cess, the time needed to generate recommendations is an important factor to
consider when it comes to industry adoption, as a slow tool can deter users
from frequent use.

In subsection 7.2 we found that Rose and TARMAQ executed in a fraction
of a second on average, while the svp algorithm had an average execution
time of 17 seconds. We observe that svD’s execution time is unsatisfactory
in a change-recommendation context, although it is certainly acceptable in
other applications, such as for test-selection.

We also argue that the difference in execution time between Rose and
TARMAQ is significant only statistically, not practically, and to this end both
can be considered as providing real-time feedback.

8.3 Performance on Seen and Unseen Queries (RQ3.2-4)

In addition to investigating the overall performance, we also considered per-
formance on seen and unseen queries separately. The discussion in subsec-
tion 7.3 and subsection 7.4 states the best-performing algorithm based on
average precision, but does not give sufficient insights on the performance
of each algorithm in practice. While the average precision is a good eval-
uator of the complete recommendation list produced by the algorithms, for
this purpose, we introduce a quantification of practical use, which is easier to
interpret than average precision. We define top10-truepositive as the number
of times an algorithm correctly predicts at least one file in the top-10 of its
recommendation list. The top10-truepositive metric, given in percentage, is
shown in Table A.5.

We see that in over 90% of cases, at least one correctly predicted file will
be in the top 10 for Rose and TARMAQ on seen queries. For svD the same is
true only in about 50% of cases.

For all algorithms, performance measured by top10-truepositive degrades
on unseen queries, which should be expected; however, given the average
precision degradation we also saw in subsection 7.4. TARMAQ and svD are
closer in performance here, but for about every 6th query, TARMAQ will pre-
dict at least one correct file in the top 10 that svp did not catch.

8.4 Performance of Algorithms on Individual Systems (RQ3.5)

In our final evaluation in subsection 7.6 we looked at each algorithm’s per-
formance on the individual software systems. Here we found that, with the
exception of Linux, TARMAQ performed best on all systems. Finally, we re-
mark the diversity expressed by the different system in terms of number of

46

8. Discussion

Table A.5: Top10-truepositive: The percentage of times that each algorithm predicts at least one
correct file in the top 10 on either seen or unseen queries

seen unseen

RosE 92% 0%
svD 56% 50%
TARMAQ 92% 65%

unique files, size of the average transaction, time between first and last trans-
action in the history, and the number of different languages used (Table A.1),
and we argue that TARMAQ’s performance on such diverse systems is satis-
factory.

However, in the future we plan to achieve a better understanding of how
individual software system characteristics might affect TARMAQ, especially in
the case of Linux where svD achieves higher average precision than TARMAQ.
A possible explanation for this result is the relatively short time frame of
the history used with Linux, where the older commits are only a month old.
Future work will consider if this short time frame could cause TARMAQ to
assign low confidence and support to correct association rules.

8.5 Threats to Validity

We identified a set of threats that could affect the construct, internal, and
external validity of our experimental results.

Threats to Construct Validity

One main threat could negatively affect the extent to which our experimental
design measures the effectiveness of TARMAQ for the purpose of generating
change recommendations.

Using Evolutionary Coupling for Software Change Impact Analysis: The
main underlying assumption behind our experimental design is that evolu-
tionary coupling infers meaningful dependencies from the transaction histo-
ries, which can in turn be used to generate effective change recommenda-
tions. While this has not been proven on a universal basis, research in the
tield showed that evolutionary coupling is an effective strategy for software
change impact analysis (section 9).

Threats to Internal Validity

One main threat could negatively affect the conclusions on the cause-effect
relationships derived from the experimental results.

47

Paper A.

Algorithms implementation: We compared the effectiveness of TARMAQ to
that of the most commonly used alternatives for deriving change recommen-
dations based transaction history, namely Rost and svp. However, we could
not find publicly available implementations of these algorithms, and we re-
implemented them based on the specification in the papers where such algo-
rithms were introduced [7, 9]. In particular, we implemented the calculation
of the decomposition matrices of svD using standard linear algebra libraries,
which ensure number overflows are properly avoided. Repeated executions
on abstract examples show that our implementations of TARMAQ, Rose and
SVD are correct.

Threats to External Validity

Four main threats could negatively affect the generalizability of the conclu-
sions drawn.

Variation in software systems: We validated TARMAQ in two industrial
systems from our user partners, and four large open source systems (subsec-
tion 6.1). These systems considerably vary in size and frequency of trans-
actions, and have been selected in order to investigate the effectiveness of
TARMAQ in a variety of software systems. However, even though our selected
software systems display good variation, we very likely have not captured all
variations.

Query Generation Process: When generating queries from the systems his-
tories, we removed transactions larger than 30 files that could contain depen-
dent files (subsection 6.3). However, as mentioned earlier, similar experimen-
tation in the literature does not consider these large transactions, because on
average they are likely to contain for the largest part unrelated files which
would introduce noise when inferring dependencies [9].

Incomplete data from our industrial partners: We were not able to include
the full history of transactions in the Kongsberg Maritime system. This is
because such transactions were parsed from semi-structured free-text fields,
which in a small number of cases contained incomplete data. However, the
transactions we excluded for this reason constitute less than 0.05% of the total
history of the KM system.

Length of history: We evaluated all algorithms using the last 10000 commits
from each software system, rather than the entire available history. While this
ensures consistency over the different systems, the included length might
have also affected our evaluation of seen and unseen queries. We had to limit
the number of commits for two reasons. (1) This was the number of commits
provided to us by our industry partners, and we wanted to be consistent to
this number also for the open-source systems. (2) For the svp algorithm, the
overhead for generating singular value decompositions of large co-change
matrices proved to be very high, and we saw the need to limit the number of

48

9. Related Work

commits to keep experiment execution times to a manageable level.

9 Related Work

We distinguish related work on association rule mining, change impact anal-
ysis, evolutionary coupling, and mixed approaches.

Association Rule Mining: Since Agrawal et al’s seminal paper introducing
the concept [10], many techniques have been proposed, generally aimed at
improving execution and memory efficiency. The most widely known include
Apriori [17], which uses an efficient pre-computation of rule generation can-
didates, Eclat [18], which partitions the search space into smaller independent
subspaces that can more efficiently be analyzed, and FPGrowth [19], which
uses a compact tree structure (the FPtree) to encode the database and enable
frequent patterns mining without candidate generation. All these apply fre-
quent pattern mining on the complete dataset. A refinement is brought by so
called targeted association rule mining techniques, which focus the generation
of rules on a particular query supplied by the user [12, 20, 21]. These tech-
niques filter transactions that are not related to the query from the database
used for rule generation, enabling a drastic reduction of execution time [12].
Furthermore, these approaches are very suitable for evolving data like soft-
ware change histories, because association rules are generated on a per-query
basis, and are always “up-to-date” with the latest repository status. A more
detailed discussion of advances in pattern mining is outside the scope of this
paper. For more details, we refer to a recent survey by Silva et al. [22].
Change Impact Analysis: Zimmerman et al. introduce Rosk [9], the work
most closely related to ours. Rosk applies targeted association rule mining to
the problem of deriving developer change recommendations for a user spec-
ified query. It uses constraints to filter out transactions that do not contain
any of the files of the query. The same constraint is used to generate only
rules whose antecedent contains all the files in the query. As discussed in
section 4, the downside of this approach is that ROSE generates no rules if no
transaction in the history is a superset of the query.

Ying et al. [13] describe a technique that mines frequent patterns in the
change history of a system to recommend potentially relevant source code to
a developer that is performing a software maintenance task. Their algorithm
uses a FPtree structure to efficiently represent the set of files frequent in the
history [19]. Similar to Rosk, this algorithm generates no rules if no transac-
tion in the history is a superset of the query, i.e. it suffers from the limitation
discussed in section 4.

Sherriff et al. [7] present an approach to change recommendation that
identifies couplings of related files using a svp of the co-change matrix. This
matrix encodes the number of times any two files changed in the same trans-

49

Paper A.

action. This algorithm does not suffer from the limited applicability dis-
cussed in section 4, but it is rather computationally expensive, as demon-
strated by the results of our empirical evaluation (section 7). Moreover, the
svD has to be recomputed after an update of the change history.
Evolutionary Coupling: There is a body of work on identifying evolutionary
coupling (also referred to as logical coupling). All these have in common that
they are based on some measure of co-change. Example measures include
course-, and fine-grained co-change information [11, 23, 24], code-churn [25],
and interaction with an IDE [4].

Gall et al. used release information to detect logical coupling between
20 releases of a large Telecommunication Switching System [11]. They later
continued this analysis to discover architectural weaknesses in source code
(e.g., amount of modularization) [25]. The coupling were primarily found
through analyzing sequences of releases in which modules were changed
together. Furthermore, couplings were also identified on a class level through
analyzing when and who (author/date) that made class changes.

Hassan and Holt present several heuristics for predicting ripple effects
that result from source code changes [26]. In addition to evolutionary cou-
pling (described as “historical co-changes” in the paper), three other heuris-
tics were also investigated, whereas one used static dependencies such as
Call/Use/Define relations, and another used code-layout to identify couplings.
Of all 4 heuristics, the use of evolutionary couplings gave the highest recall
score, meaning it correctly identified the most couplings (avg. 87%).

Jafar et al. [27] perform an exploratory study on co-changes at file level

granularity. They introduce two timing related patterns for co-changes that
can help to more accurately mine transactions in a change history.
Mixed Approaches: Hipikat [28] integrates various developer related arti-
facts, such as change history, email discussions and issue tracking systems.
Vector-based information retrieval techniques are used to mine relations be-
tween artifacts. Additional relations are created using heuristics, such as
the matching of issue IDs in commit messages to issue reports in bugzilla.
Hipikat uses this cross-indexed project memory to recommend relevant arti-
facts for a task , either directly from a query, or automatically based on a
developer’s working context (e.g., documents open in an IDE).

Kagdi et al. [29] combine history based evolutionary coupling with so
called conceptual coupling which is derived using information retrieval tech-
niques on a single version (i.e, a release) of a software system. They show
that the combination of these two techniques provides statistically significant
improvements in accuracy over the individual techniques. Mondal et al. [30]
combine association rule mining with change correspondence, a measure for
the extent to which identifiers and constants in co-changed entities overlap.
This is a lightweight form of conceptual coupling, which is then used to pri-
oritize association rules, as a more source-code aware version of the standard

50

10. Concluding Remarks

support and confidence measures.

Although originally developed for other contexts, there is no reason why
these orthogonal measures and additional sources could not be used in com-
bination with the technique we propose in this paper, and achieve similar
benefits as in their original application.

10 Concluding Remarks

With new techniques and data-sources, progress is being made on improving
Change Impact Analysis (CIA). The use of evolutionary coupling as a driver
of CIA is a promising direction that can address some caveats of traditional
static/dynamic dependency analysis. In particular, the use of evolutionary
coupling is inherently language agnostic, and in general can potentially find
couplings where static/dynamic approaches cannot find a coupling because
of a lack of explicit data/control flow. This is a considerable advantage given
the increasing heterogeneity of today’s software systems.

In this paper we present an algorithm (TarmAaQ) for CIA using a general-
ized analysis of evolutionary coupling with respect to some change-scenario
(changed files). The use of TARMAQ for CIA promises a best effort analysis of
the evolutionary coupling given any change-scenario. The contributions of
this paper are the following: (1) We provided a classification of two different
change-scenarios for change impact analysis. (2) We provided an empirical
evaluation of the frequency of these change-scenarios. (3) We introduced
an algorithm (TARMAQ) that can analyze the evolutionary coupling of any
change-scenario, and therefore can support CIA for most change-scenarios.
(4) We provided a comprehensive evaluation of TARMAQ on two industrial
software systems from our industry partner and four open source systems.
Directions for Future Research: In future work we would like to address
the following: (1) We plan to conduct a larger empirical evaluation of TARr-
MAQ, both in the number of software systems and in the number of evaluated
factors. We would, for example, like to explore the effect of history-size and
query-size on performance, and attempt to classify software systems in terms
of how applicable our approach might be. (2) We also plan to explore meth-
ods for further increasing overall performance, and especially performance
on unseen queries. (3) Third, we hope to directly compare CIA based on evo-
lutionary coupling with static/dynamic dependency analysis. (4) Next we
plan to apply TARMAQ on other problems, for example test-selection. (5) Fi-
nally, future work will explore existing alternative interestingness measures
that might replace support/confidence, and see how they perform.
Acknowledgement: This work is supported by the Research Council of
Norway through the EvolvelT project (#221751/F20) and the Certus SFI. Dr.
Binkley is supported by NSF grant IIA-1360707 and a]. William Fulbright

51

References

award.

References

[1]

3]

[4]

[6]

G. Canfora and L. Cerulo, “Impact Analysis by Mining Software
and Change Request Repositories,” in International Software Metrics
Symposium (METRICS). 1EEE, 2005, pp. 29-37. [Online]. Available:
http:/ /ieeexplore.ieee.org/articleDetails.jsp?arnumber=1509307http:

/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1509307

M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more
efficient static software change impact analysis method,” in ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE). ACM, 2008, pp. 84-90. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1512475.1512493

X. Ren, F Shah, E Tip, B. G. Ryder, and O. Chesley, “Chianti:
a tool for change impact analysis of java programs,” in ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2004, pp. 432-448. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1035292.1029012

M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact
analysis of change requests on source code based on inter-
action and commit histories,” in International Working Confer-
ence on Mining Software Repositories (MSR), 2014, pp. 162-171.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2597096http:
//dx.doi.org/10.1145/2597073.2597096

D. W. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo,
“ORBS and the Limits of Static Slicing,” in International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
2015, pp. 1-10. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2635868.2635893

A. R. Yazdanshenas and L. Moonen, “Crossing the bound-
aries while analyzing heterogeneous component-based software
systems,” in IEEE International Conference on Software Main-
tenance (ICSM). 1EEE, 2011, pp. 193-202. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSM.2011.6080786http:/ /ieeexplore.
ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=6080786

M. Sherriff and L. Williams, “Empirical Software Change Impact
Analysis wusing Singular Value Decomposition,” in International
Conference on Software Testing, Verification and Validation (ICST). IEEE,

52

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

2008, pp. 268-277. [Online]. Available: http://ieeexplore.ieee.org/
Ipdocs/epic03/wrapper.htm?arnumber=4539554

R. Srikant and R. Agrawal, “Mining generalized association rules,”
in International Conference on Very Large Data Bases (VLDB), 1995, pp.
407-419. [Online]. Available: http://wwwqbic.almaden.ibm.com/cs/
projects/iis/hdb/Publications/papers/vldb95{_}tax{_}rj.pdf

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1463228

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http://portal.acm.org/citation.cfm?doid=170035.170072

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 1998, pp. 190-198. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=738508

R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

A. T. T. Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=1324645

T. Zimmermann, “Preprocessing CVS data for fine-grained
analysis,” in International Workshop on Mining Software Repositories
(MSR), wvol. 2004. IEE, 2004, pp. 2-6. [Online]. Available:
http:/ /link.aip.org/link /IEESEM /v2004 /1917 /p2 /s1{&}Agg=doihttp:

/ /digital-library.theiet.org/content/conferences/10.1049 /ic{_}20040466

L. A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user
behavior in WWW search,” in International conference on Research and
development in information retrieval (SIGIR). ACM, 2004, p. 478. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=1008992.1009079

J. O. Woods and the Ruby Science Foundation, “NMatrix: A dense
and sparse linear algebra library for the Ruby programming language,”
2013. [Online]. Available: http:/ /sciruby.com

53

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

References

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in International Conference on Very Large Data Bases (VLDB), 1994,
pp. 487-499.

M. J. Zaki, “Scalable algorithms for association mining,” IEEE
Transactions on Knowledge and Data Engineering, vol. 12, no. 3, pp.
372-390, 2000. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapperhtm?arnumber=846291

J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Approach,”
Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-
87, 2004. [Online]. Available: http://link.springer.com/10.1023/B:
DAMI.0000005258.31418.83

A. Hafez, J. Deogun, and V. V. Raghavan, “The Item-Set Tree: A
Data Structure for Data Mining,” in Data Warehousing and Knowledge
Discovery, ser. LNCS. Springer, 1999, vol. 1676, pp. 183-192. [Online].
Available: http://link.springer.com/10.1007 /3-540-48298-9

M. Kubat, A. Hafez, V. V. Raghavan, and J. Lekkala, “Itemset
trees for targeted association querying,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 6, pp. 1522-1534, nov
2003. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1245290

A. Silva and C. Antunes, “Constrained pattern mining in the
new era,” Knowledge and Information Systems, vol. 47, no. 3, pp.
489-516, 2016. [Online]. Available: http://link.springer.com/10.1007/
s10115-015-0860-5

D. Beyer and A. Noack, “Clustering Software Artifacts Based on
Frequent Common Changes,” in International Workshop on Program Com-
prehension (IWPC). 1EEE, 2005, pp. 259-268. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1421041

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on
Fine-Grained Change Information,” in Working Conference on Reverse
Engineering (WCRE). 1EEE, 2008, pp. 42—46. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=4656392

H. Gall, M. Jazayeri, and]. Krajewski, “CVS release history
data for detecting logical couplings,” in International Workshop
on Principles of Software Evolution (IWPSE). IEEE, 2003, pp. 13-23.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=1231205

54

[26]

[27]

[28]

[29]

[30]

References

A. E. Hassan and R. Holt, “Predicting change propagation in
software systems,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 2004, pp. 284-293. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=1357812

F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “An
Exploratory Study of Macro Co-changes,” in Working Conference
on Reverse Engineering (WCRE). IEEE, oct 2011, pp. 325-334.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=6079858

D. Cubranic, G. Murphy, J. Singer, and K. Booth, “Hipikat: a project
memory for software development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 446-465, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463229

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blending
conceptual and evolutionary couplings to support change impact analy-
sis in source code,” in Working Conference on Reverse Engineering (WCRE),
2010, pp. 119-128.

M. Mondal, C. K. Roy, and K. A. Schneider, “Improving
the detection accuracy of evolutionary coupling by measuring
change correspondence,” in Conference on Software Maintenance,
Reengineering, —and Reverse Engineering (CSMR-WCRE). IEEE,
2014, pp. 358-362. [Online]. Available: http:/ /ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6613853http:

/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6747194

55

References

56

Paper B

Improving Change Recommendation using
Aggregated Association Rules

Thomas Rolfsnes, Leon Moonen, Stefano Di Alesio,
Razieh Behjati and Dave W. Binkley

Accepted for publication in the main research track of the 13th International
Conference on Mining Software Repositories (MSR), May 14-15, 2016.
Further invited and submitted to the MSR 2016 special issue published by
the Springer journal Empirical Software Engineering (EMSE).

(© 2016 IEEE
The layout has been revised.

1. Introduction

Abstract

As the complexity of software systems grows, it becomes increasingly difficult for
developers to be aware of all the dependencies that exist between artifacts (e.g., files
or methods) of a system. Change recommendation has been proposed as a technique
to overcome this problem, as it suggests to a developer relevant source-code artifacts
related to her changes. Association rule mining has shown promise to deriving such
recommendations by uncovering relevant patterns in the system’s change history.
The strength of the mined association rules is captured using a variety of interesting-
ness measures. However, state-of-the-art recommendation engines typically use only
the rule with the highest interestingness value when more than one rule applies. In
contrast, we argue that when multiple rules apply, this indicates collective evidence,
and aggqregating those rules (and their evidence) will lead to more accurate change
recommendation.

To investigate this hypothesis we conduct a large empirical study of 15 open
source software systems and two systems from our industry partners. We evaluate
association rule aggregation using four variants of the change history for each system
studied, enabling us to compare two different levels of granularity in two different
scenarios. Furthermore, we study 40 interestingness measures using the rules pro-
duced by two different mining algorithms. The results show that (1) between 13%
and 90% of change recommendations can be improved by rule agqregation, (2) rule
aggregation almost always improves change recommendation for both algorithms and
all measures, and (3) fine-grained histories benefit more from rule aggregation.

1 Introduction

The evolution of a software system is accompanied by continuous growth in
the number and complexity of interactions between system artifacts. Thus,
over time, it becomes increasingly challenging for developers to manage the
impact of changes made to the system. To address this problem, Change
Impact Analysis (CIA) has been proposed to identify software artifacts (e.g.,
tiles, classes, and methods) affected by a given change [1-4]. CIA is typi-
cally used to derive a software change recommendation as direct feedback to a
developer regarding artifacts that may also be in need of change.

Classical CIA employs static and dynamic dependence analysis [5]. For
example, by identifying the methods that call a changed method. However,
both static and dynamic dependence analysis are generally language spe-
cificc making them unsuitable for heterogeneous software systems [6]. In
addition, because of its conservative nature static analysis is known to over-
approximate solutions [7], while dynamic analysis can involve considerable
run-time overhead [8].

These limitations have increased interest in alternative approaches [9].

59

Paper B.

Prominent among these is the identification of dependences using evolution-
ary coupling. Such couplings are based on how a software system changes over
time, something that is missed by static and dynamic dependence analysis. In
essence, evolutionary coupling taps into the developers’ inherent knowledge
of the dependencies in the system. This co-change knowledge can manifest
itself in several ways: commits, bug-reports, context-switches in an IDE, etc.
It can thus be extracted, for example, from the project’s version control sys-
tem [10], its issue tracking database, or by instrumenting the development
environment [11].

This paper explores the use of co-change information extracted from git
repositories as the basis for uncovering the evolutionary coupling. Doing so
exploits the fact that dependent artifacts are likely to change together. Specif-
ically, we mine evolutionary couplings using association rule mining [12], an
unsupervised machine learning approach that reveals relations among items
in a data set. The relative importance of mined rules is typically captured by
an interestingness measure (e.g., support and confidence), which seeks to capture
the relative utility of each mined rule [13-15]. In scenarios where multiple
rules can be applied, it is common to consider only the single rule with the
highest interestingness value [16]. In contrast, we hypothesize that the aggre-
gation of such rules can be exploited to provide improved recommendations.
Contributions: This article builds upon our previous work with association
rule aggregation [17]. In particular, it extends our previous work in six key
respects: (1) we significantly scale up the empirical study of association rule
aggregation in the context of change recommendation (2) we include a study
of aggregation performance on the level of individual software systems (3) we
introduce and study a new aggregation function, the Hyper Cumulative Gain
(4) we study the effect that history granularity (files, methods etc.) has on
the precision gained from rule aggregation (5) we formally prove that all
studied aggregation functions satisfy our previously proposed aggregation
properties, and finally (6) we extend our review of the related work.
Overview: The rest of this article is organized as follows: section 2 pro-
vides background on targeted association rule mining. section 3 describes
limitations of the current state-of-art approaches to association rule mining.
section 4 overviews the interestingness measures used to weigh the mined as-
sociation rules. section 5 introduces the aggregation of association rules into
hyper-rules, while section 6 presents the aggregation functions considered in
the experiments. section 7 describes the setup of our empirical evaluation
whose results are presented and discussed in section 8. section 9 discusses
potential threats that could affect the validity of our conclusions, and sec-
tion 10 presents related work. Finally, section 11 concludes the article with
final remarks and outlines future work.

60

2. Association Rule Mining

2 Association Rule Mining

Agrawal et al. introduced the concept of association rule mining as the disci-
pline aimed at inferring relations between entities of a data set [12]. Associa-
tion rules are implications of the form A — B, where A is referred to as the
antecedent, B as the consequent, and A and B are disjoint sets of entities. For
example, consider the classic application of analyzing shopping cart data; if
multiple transactions include bread and butter then a potential association
rule is bread — butter. This rule can be read as “if you buy bread, then you are
also likely to buy butter.”

In the context of mining evolutionary coupling from historical co-change
data, the entities are the files of the system! and the sequence (history) 7 of
transactions, is the sequence of past commits. More specifically, a transaction
T € T is the set of files that were either changed or added while addressing
a given bug or feature addition, hence creating a logical dependence between
the files [18].

As originally defined [12], association rule mining generates rules that
express patterns in a complete data set. However, some applications can
exploit a more focused set of rules. Targeted association rule mining [19] focuses
the generation of rules to those that satisfy a given constraint, e.g., stating
that the antecedent of all mined rules has to belong to a particular set of files.
Doing so reduces the number of rules generated and thus can significantly
improve the rule generation time [19].

When generating change recommendations, rule constraints are based on
a change set: the set of modified files since the last commit. In this case, only
rules with at least one changed artifact in the antecedent are generated. The
output of a change recommendation is the set of files that are historically
changed along with the elements of the change set. For example, given the
change set {a,b,c}, a change recommendation would consist of the files that
were changed when a, b, and ¢ were changed. The recommended files are
those found in the consequent of the mined rules, and these files are typically
ranked based on the rule’s interestingness value.

To the best of our knowledge, only a few targeted association rule mining
algorithms have been considered in the context of change recommendation:
Zimmerman et al. [20], Ying et al. [21], and Rolfsnes et al. [22] (our previous
work). In contrast, simple co-change algorithms have been applied in a variety
of domains [18, 23-25]. The existing targeted association rule mining algo-
rithms and the simple co-change algorithms differ in terms of the subsets of

! Other levels of granularity are possible as our algorithms are granularity agnostic.
Thus, our initial description at the file level is without loss of generality. Provided
suitably co-change data the algorithms can relate methods or variables just as well as
files, a fact which will be exploited later on in the paper.

61

Paper B.

the change set used to form the rule antecedents. Consider, for example, the
subsets of the change-set C = {a,b,¢,d}:

powerset(C) = {{}, (B.1)

{a},{b},{c}.{d}, (B.2)
{a,b},{a,c}, {a,d}, {b,c},{b,d}, {cd}, (B.3)
{a,b,c},{a,b,d}, {a,c,d}, {bcd}, (B.4)
{a,b,c,d}} (B.5)

Of C’s subsets, both Zimmerman’s and Ying’s algorithms only consider rules
based on line B.5 (i.e., rules of the form {a,b,c,d} — X) because these tech-
niques constrain the antecedent to be equal to the change set. At the other
end of the spectrum, co-change algorithms consider rules from the singleton
sets in line B.2, such as {a} — X or {b} — X. (As a notational conve-
nience, singleton sets are often written without brackets as in “a — X”.) In
previous work, we introduced TARMAQ, the most versatile among these algo-
rithms [22]. TARMAQ uses the set from any one of lines B.2, B.3, B.4, or B.5.
The particular line used is dynamically chosen based on the maximal overlap
with the change set [22].

In this paper we study only Co-CHANGE and TARMAQ. Zimmerman's
Rosk algorithm is not included because its behavior is subsumed by TARMAQ
(i.e., whenever RosE is able to make a recommendation, TARMAQ makes the
same recommendation, but TARMAQ is able to generate recommendations
when RosE is not [22]). To provide some intuition on the behavior of Co-
CHANGE and TARMAQ we provide the following example:

Example 1 (Co-Change and Tarmaq). Given a query Q of changed artifacts,

Co-CHANGE and TARMAQ work as follows:

Co-Change: for each artifact q € Q, find the set of artifacts C not in Q that have
changed with q in the past, then for each ¢ € C create rules such that the left
hand side is equal to q, and the right hand side is equal to c.

Tarmagq: find the transactions with the largest intersection with Q, then create
rules such that the left hand size is equal to the intersection, and the right
hand side is equal to the respective difference (“leftover” artifacts of each
transaction).

For example, assume that artifacts a, b, and f have been changed by a developer,

yielding the query Q = {a,b, f}, then given the following change history, Co-

62

3. Problem Description

CHANGE and TARMAQ will output the following rules:

Change History Co-CHANGE TARMAQ
TXID Artifacts a—Y a,b— X
TX: {a,Y} a— X bf - X
TX; {ab X} b— X
TXs {b,f,X} f—=X

For Co-CHANGE, a has changed with both Y and X, resulting in the two first rules,
while b and f has changed with X, resulting in the two last rules. For TARMAQ, the
largest intersections (of size two) can be found in TX,, and T X3, and the difference
with each respective intersection and transaction is X, resulting in the two rules.

3 Problem Description

In complex software systems, as well as systems with many active developers,
it can be challenging for each individual developer to be aware of all depen-
dencies that exist in the software. To aid a developer, a change recommendation
can be made based on recent changes. The application of association rule
mining to change recommendation involves looking for the evolutionary cou-
pling between artifacts (files, methods, etc.) of a system. This search considers
artifacts coupled if and only if they have changed together in the past. Fur-
thermore, the strength of a coupling is given by an interestingness value. For
example, how frequently the rule’s artifacts change together.

In our previous work [22], which sought to find evolutionary couplings
through association rule mining of a system’s version history, we noticed that
there are often rules with different antecedents, but the same consequent. For
example, consider the following rules involving artifacts 4, b, and c:

rn={ay = {c}
ra = {b} = {c}

which can be interpreted as “if you change 4, consider changing c¢,” and “if
you change b consider changing c.” Given the change set {a,b}, existing rec-
ommendations systems will select one of the two rules, that recommend c.
However, we conjecture that doing so may be a mistake. For example, hav-
ing multiple applicable rules for the same consequent potentially provides
increased evidence that the consequent is relevant. We hypothesize that this
increased evidence can be captured by the aggregation of rules into hyper-rules,
whose use will lead to more accurate recommendations. In terms of the ex-
ample, we seek to combine rules r; and r, into the hyper-rule r3 that captures

63

Paper B.

the cumulative evidence that ¢ should be recommended for change when a
and b are changed.

A concrete example will help illustrate our goal and also provide a bet-
ter intuition into the value of association rule aggregation. The example in-
volves a sequence of past transactions that each include a set of artifacts that
changed together. The example also motivates the need to aggregate the
interestingness values (defined in section 4) of the rules to produce an inter-
estingness value for the resulting hyper-rule. The example does this using,
as a simple interestingness value, the percentage of the transactions that give
rise to the rule.

Example 2. Consider the following (historic) sequence of transactions:

T =ax}, by} Aeyh {dyy, {a x]]

and the change set C = {a,b,c,d} where, based on T and C, the following rules
have been mined (the interestingness of each is given in parentheses):

a—x (40%)
b—y (20%)
c—y (20%)
d—y (20%)

In these rules all the artifacts that occur in an antecedent are part of change set C
while all artifacts that occur in a consequent are potentially impacted by the change
with a certainty reflected by the rule’s interestingness value.

Clearly, without aggregation, x is recommended above y, because it has
changed two times with an item in the change set (a), while y had changed
at most once with any individual item of the change set. However, y has
changed more times with at least one item of the change set. Therefore, there
is combined evidence that y should be recommended above x.

Generalizing this example, our goal is to aggregate mined association
rules into hyper-rules, which combine evidence and ultimately provide more
accurate recommendations. To this end, the remainder of this paper investi-
gates the impact of three aggregation techniques on the performance of two
association rule mining algorithms using a collection of 40 interestingness-
measures.

64

4. Interestingness Measures

4 Interestingness Measures

The relative value of the rules mined via targeted association rule mining
is given by an interestingness measure. In Agrawal et al.’s seminal paper on
association rule mining [12], two interestingness measures were introduced,
support and confidence.

Definition 1 (Support). Given a sequence of transactions T, the support of the
rule A — B is defined as the number of transactions where the union of the an-
tecedent and consequent is a subset, divided by the total number of transactions.
Therefore, support represents the probability of A U B being a subset in a transac-

tion:
w {TeT:{AUB} C T}

7
Intuitively, the higher the support, the more likely the rule is to hold, while

rules with low support identify weaker relations. For this reason, a minimum
threshold on support is often used to filter out uninteresting rules.

support(A — B)

Definition 2 (Confidence). Given a sequence of transactions T, the confidence
of the rule A — B is defined as the number of transactions with the union of A and B
as a subset, divided by the number of transactions where A is a subset. Therefore, the
confidence represents the conditional probability of B being a subset in a transaction,
given that A is a subset of that transaction:

w {T €T :{AUB} C T}

confidence(A — B) TeT ACT]

Since the introduction of targeted association rule mining, a large num-
ber of alternative interestingness measures have been proposed. However,
all these measures can be defined using the same set of basic probabilistic
quantities. Indeed, the interestingness measures of a rule A — B build upon
the following probabilities:

P(A): the likelihood of A changing in the history.
P(B): the likelihood of B changing in the history.
P(A, B): the likelihood of A and B changing together in the history.

As shown in Table B.1, the other probabilities used in the measure defini-
tions can be inferred from these three. For example, support is the probability
P(A, B), which is the probability that a transaction includes both A and B.
Likewise, confidence is the probability P(B|A), which is the conditional proba-
bility that B is in a transaction given that A is in the same transaction. Several
measures also account for the non-occurrence of the antecedent or conse-
quent. For example, the causal support is defined as P(A,B) + P(—A,—B).

65

Paper B.

Table B.1: Overview of probabilistic building blocks used to define the interestingness measures

of Table B.2
Probability Definition

P(A) %

P(B) I{Te"f%ﬂl
P(A,B) {TeT :{‘AﬁJB}gm
P(=4) 1—P(A)

P(-B) 1— P(B)
P(=A,—-B) 1-P(A)—P(B)+P(A B)
P(—A,B) P(B) — P(A, B)
P(A,—B) P(A) — P(A,B)

66

Conditional
Probabilities Definition
P(A|B) B
P(B|A) S
P(-AlB) FLSE
P(-Bla) LB
P(Al-B) Hod
P(Bl-4) BN
P(-A|-B) PGALE
P(-Bl-a) HEod

4. Interestingness Measures

Table B.2: Overview of the 40 interestingness measures considered in our study (continued on
next page). The notation [min..mid..max] is used to provide the range of each interestingness
measure, min/max provides the minimum and maximum value respectively, mid indicates the
point of no correlation. If only [min..max] is used, the point of no correlation is given by min.

Interestingness Measure Range Definition

Added Value [14] [~0.5.0.1] P(B|A) — P(B)

Causal Confidence [26] [0..1] 1% (P(BJA) + P(=A|-B))

Causal Support [26] [0..1] P(A,B) + P(—A,—-B)

Collective Strength [27] [0..1..00) P(Al)jilé(/g))illzg:i‘):gzﬂ) * 17pff}:;ifg;:£g:g‘)jﬁgﬂ3)
Confidence [12] [0..1] P(BJA)

Conviction [28] [0..00) %

Cosine [14] [0..1] %

Coverage [15] [0..1] P(A)

Descriptive Confirmed Confidence [26] [—1..0..1] P(B|A) — P(—B|A)

Difference Of Confidence [29] [—1..0.1] P(B|A) — P(B|—-A)
Example and Counterexample Rate [30] (—c0..0..1] W

P(A) % (P(B|A)? 4 P(—B|A)?) + P(—A) % (P(B|-A)?

Gini Index [31] [0..1]
+P(~B|-A)?) — P(B)? — P(~B)?

; |P(A|B)—P(B|A)]
Imbalance Ratio [32] [0..1] BUATE) %P (5| A)—P(ATB)P(BIA)

Interestingness Weighting Dependency

(with parameters k=2, m=2) [33] [0..1] (%l‘;;))“‘n x (P(A,B))™

] Measure [34] 0.1] P(A, B) « 10g(”1<f(“3f)‘>) + P(A, —B) * log(P,SFE'BA)
Jaccard [35] [0..1] %

Kappa [36] [-1.0.1] =2 (A'B>+f£;f(‘;;)ﬁgé’><f;*(‘f %L}’Zi}j‘)“’ (2B)

Klosgen [37] [-1.0.1] +/P(A, B) x max(P(B|A) — P(B), P(A|B) — P(A))

67

Paper B.

Table B.2: Overview of the 40 interestingness measures considered in our study (continued from
prev. page).

Interestingness Measure Range Definition

Kulczynski [38] [0..1] P(g,B) * <P(1A) + P(lB))
Laplace Corrected Confidence [39] [0..1] %

Least Contradiction [40] (—00..0..1] %{W
Leverage [41] [—1..0..1] P(B|A) —P(A) % P(B)
Lift [28] [0..1..09) %

P(A,B)—P(A)+P(B)

Linear Correlation Coefficient [42] [—1..0..1] JRARP(B) P A)=P D)

Loevinger [43] [—1..0.1] - %

Odd Multiplier [30] 0..00) s

Odds Ratio [44] [0..1..00) %

One Way Support [45] [~1..0..00) P(B|A) * logz(%>
Piatetsky-Shapiro [41] [—0.25..0..0.25] P(A,B)—P(A)*P(B)
Prevalence [15] [0..1] P(B)

Recall [15] [0..1] P(A|B)

Relative Risk [15] [0..00) %

Sebag Schoenauer [46] [0..c0) pp(%;BB))

Specificity [15] [0.1] P(=B|-A)

Support [12] [0.1] P(A,B)

Two Way Support [45] [—1..0..1] P(A,B) * 1082(()1473()3))
Varying Rates Liaison [47] [—1..0..00) (A ()*P()B) 1

Yules Q [48] [~1.0.1] da ratio 1

Yules Y [49] [~1.0.1] Vedds o1

Zhang [50] [—1..0..1] mux(p(igﬁ)@gf}&?il?(A,ﬁB))

68

4. Interestingness Measures

A complete list of the interestingness measures used in our study and their
definitions is given in Table B.2.

There is one final detail related to the interestingness measures that is
relevant to our discussion: the range of a measure, and specifically its abil-
ity to measure either negative, positive, or no correlation between a rule’s
antecedent and consequent. Early measures such as support and confidence
focus on positive correlations. However, it is also possible to consider nega-
tive correlations. These would concern rules that capture, for example, “if a
changes, then it is unlikely that you need to change b”.

The range of most measures falls into one of a few categories. Most exist-
ing measures (e.g., support) range between 0 and 1. This [0..1] range is also the
easiest to interpret as a correlation, where 0 naturally indicates no correlation
and any higher value the degree of positive correlation. Another common
range is [-1..0..1], where 0 again indicates no correlation, but negative corre-
lation is also possible. In addition, there also exist ranges such as [0..1..c0),
where 1 indicates no correlation and the maximum value is unbounded.

Piatetsky and Shapiro formalize this notion using four properties that
they assert all interestingness measures should satisfy [41]. The four proper-
ties use V to denote the value produced by an interestingness measure:

No correlation: V =0 when P(A) and P(B) are statistically independent (i.e.,
when P(A,B) = P(A) - P(B)).

Positive correlation: When P(A) and P(B) remain unchanged, but P(A, B)
monotonically increase, V should also monotonically increase.

Negative correlation: When P(B) and P(A, B) remain unchanged, but P(A)
monotonically decrease, V should also monotonically decrease.

Negative correlation: When P(A) and P(A, B) remain unchanged, but P(B)
monotonically decrease, V should also monotonically decrease.

Existing interestingness measures satisfy these properties to a varying de-
grees, especially with respect to the way positive and negative correlation are
captured [14]. For example, 23 of the 40 measures shown in Table B.2, capture
only positive correlations. Furthermore, based on the empirical data we col-
lected, only three of the remaining 17 measures actually produced negative
correlations in practice.?

2The three measures are: descriptive confirmed confidence, example and counterexample rate, and
least contradictions. Other able measures also sometimes produced negative values, although
quite rarely.

69

Paper B.

5 Association Rule Aggregation

To assess the value of aggregating the evidence provided by a collection
of conventional association rules, we introduce the concept of a hyper-rule,
which provides an effective summary of a set of constituent rules. When
forming hyper-rules, we have to answer two questions: (1) What constitutes
a hyper-rule? In other words, how do we select the rules that form a hyper-
rule? We address this question in Section 5.1. (2) How do we rank hyper-rules
within a set of rules (either conventional or hyper)? We address this question
in Section 5.2.

5.1 Hyper-Rule Formation

While in general any set of rules can be aggregated to form a hyper-rule,
the focus of this paper is on the aggregation of rules that share a common
consequent. These rules represent the collective impact of a change on the
respective consequent, which then naturally forms the basis for a change
recommendation.

Example 3. Consider the set R = {{a,b} — {c, f},{a, b} — {c},{d} — {c}}.
For the purpose of change recommendation, we aggregate the last two rules in set
R, since they share the same consequent. The antecedent of the resulting hyper-rule
is the set of antecedents of all the constituent rules.

Another potentially interesting application of rule aggregation is to ag-
gregate rules with the same antecedent. Doing so facilitates determining the
overall impact of a change. As an example, aggregating the first two rules in
set R, introduced in Example 3, results in a hyper-rule that summarizes the
impact of changing a and b together. The consequent of such a hyper-rule is
the set of consequents of all the constituent rules.

Beyond these two, other problem domains may require still other ways
of selecting rules for aggregation. In general, a hyper-rule, which intuitively
summarizes a set of conventional rules, is defined as follows:

Definition 3 (Hyper-Rule). Given a set of rules R = {A; — Cy,..., Ay — Cy}
we define hyper-rule H(R) as

n n

H(R) = [J{Ai} = U{C}

i=1 i=1

Note that the antecedent and the consequent of a hyper-rule are sets of
sets of entities rather than being sets of entities as found in conventional rules.

70

5. Association Rule Aggregation

To help distinguish hyper-rules and conventional rules, we use a double-
arrow = in a hyper-rule rather than the single arrow — used with conven-
tional rules.

Example 4. Given R, the set of rules introduced in Example 3, let R" C R be
the set of rules that share the same consequent (ie., R = {{a,b} — {c},{d} —
{c}}). Then the hyper-rule generated from R’ is:

H(R') = {{a, b}, {d}} = {{c}}

Notice that the definition for a hyper rule concerns only the association
rules and not the originating transactions. This opens up the possibility of
identifying cross transactional patterns. In Example 4, the hyper rule simply
states that when a and b change, ¢ changes, and when d changes, c also
changes. We do not require that all of 2, b and d change together with c in the
same transaction, rather we are only concerned with combining the evidence
found in the individual association rules. Our hypothesis is that combining
the evidence for c into a single hyper rule will better capture the collective
evidence. The challenge here is to quantify the importance of a hyper rule,
this we discuss in the next section.

5.2 Interestingness Measure Aggregation

In the same manner that an association rule has an interestingness measure
a hyper-rule has an aggregated interestingness measure, which summarizes
the interestingness values of all its constituent rules into a single value. Ag-
gregated interestingness measures allow ranking hyper-rules; within a set of
rules that may potentially contain both hyper-rules and conventional asso-
ciation rules. While an interestingness measure implies a total order over a
set of conventional rules, an aggregated interestingness measure extends that
total order to sets of rules that contain both hyper-rules and conventional
association rules.

Although it is possible to define aggregated interestingness measures by
extending each interestingness measure to be applicable to hyper-rules, a
more scalable approach is to provide measure-agnostic aggregators that sim-
ply aggregate a number of interestingness values into a single value. Such
aggregators should conform to a set of properties that are described in Hyper-
Rule 4.

Definition 4 (Properties of a measure aggregator). Let M be an interestingness
measure defined over conventional rules, and R be a set of conventional rules. Let

71

Paper B.

@® denote a measure agqregator that maps H(R) and M to a single value represent-
ing the agqregated interestingness value (i.e., ®(H(R), M)). Then the following
properties should hold:

1. Let r1 and ry be two conventional rules, then

M(r1) = M(r2) = @(H({r}), M) = &(H({r2}), M)

2. For each set of conventional rules R, if |R| > 1, then for each r € R the
following holds:

> G(H(R—{r}),M) if M(r) >0
S(H(R),M){ =B(HR—-{r}),M) if M(r)=0
<®(H(R—-{r}),M) if M(r) <O

The first property ensures that applying a measure aggregator, &, on sin-
gle rules retains their original ordering.

The second property ensures monotonicity. For example, it requires that
the aggregation function is strictly increasing when rules with positive mea-
sure values are aggregated. Note that our theoretical framework for ranking
hyper-rules is agnostic with regards to the interestingness measure used.

6 Aggregation Functions

In this section we present three aggregation functions that satisfy the prop-
erties of Properties of a measure aggregator 4 for non-negative values®. Thus
this initial exploration of rule aggregators focus on aggregation of positive
correlation, as we assess the inclusion of negative correlation to be a topic in it
self. We briefly discuss potential strategies in subsection 6.5.

The first two aggregators, Cumulative Gain (CG) and Discounted Cumu-
lative Gain (DCG), are adapted from well known performance measures in
Information Retrieval. They are typically used to evaluate search results by
evaluating a target list against an ideal (oracle) list [51]. In addition to these
two, we introduce an additional aggregation function, Hyper Cumulative
Gain (HCG). All aggregators are empirically evaluated in section 8.

6.1 Cumulative Gain

The first aggregation function, Cumulative Gain, comes from Information
Retrieval [51].

3Formal proofs for the three aggregator functions are provided in the appendix.

72

6. Aggregation Functions

Definition 5 (Cumulative Gain). Given an interestingness measure M and a set
of rules R = {ry,...,ry}, where Vr € R: M(r) > 0, the Cumulative Gain of the
hyper-rule #(R) is defined as follows:

CG(H(R), M) = éM(n)

Example 5 (Cumulative Gain). Given the following set of rules R, and an in-
terestingness measure M:

R ={r,r,r3}
M = {(r1,0.7),(r2,0.3),(r3,0.3) }

the Cumulative Gain of H(R) is computed as follows:

CG(H(R)) =0.7+03+0.3 =13

6.2 Discounted Cumulative Gain

While similar in nature to CG, DCG adds a coefficient that reduces the impact
of subsequent values. This enables DCG to give greater weights to those
values that have the largest impact [51]. Note that for DCG, internal ordering
matters, in the following definition we therefore assume that rules are sorted
from high to low according to their interestingness value.

Definition 6 (Discounted Cumulative Gain). Given an interestingness measure
M and a set of sorted rules R = {r,...,rn}, where Vr € R: M(r) > 0, the DCG
of the hyper-rule H(R) is defined as follows:

DCG(H(R),M) =)_

. M(r;)
Notice that Toga (i)

tonically increasing while the rules values are decreasing. In subsection 11.1
we provide a formal proof that DCG satisfies the properties of Discounted
Cumulative Gain 4 for non-negative values of M.

is monotonically decreasing because l0g> (i + 1) is mono-

Example 6 (Discounted Cumulative Gain). Consider the following set of rules
R, with M giving the corresponding interestingness values:

R ={r,r,r3}
M = {(r1,0.7),(r2,0.3),(r3,0.3) }

73

Paper B.

DCG of H(R) for M is given by:

_ 07 03 . 03
log2(2) = log2(3) ~ loga(4)

DCG(H(R), M) ~ 1.04

6.3 Hyper Cumulative Gain

The last aggregator function, Hyper Cumulative Gain (HCG), incorporates two
properties, which makes it different from from CG and DCG. First, aggrega-
tion through HCG respects the bounds of the source interestingness measure.
Second, it incorporates the number of rules that were aggregated to produce
the hyper rule. In order to achieve this, HCG outputs a pair rather then a
single value. We will talk about each element of the pair in order, and refer
to them as HCG; and HCG,.

HCG: Aggregating the interestingness measure values

For any given measure M, the values that HCG; generates are guaranteed
to be within the range of M. This is as opposed to CG and DCG that do
not necessarily preserve the original range of the respective interestingness
measure. For example, the support measure has the range [0..1]. Given two
support values of 0.8 and 0.7, the CG aggregator results in 1.5, which is
greater than the upper bound 1. However, HCG; is 0.94, which is within the
range [0..1]. Consequently, compared to CG and DCG, the aggregated values
produced by HCG; put the hyper-rules on a more level playing field with the
conventional rules, which are naturally constrained by their interestingness
measure’s range.

Apart from satisfying the range constraint, HCG; also has a probabilistic
interpretation. From this perspective, HCG; provides the likelihood that at
least one of the rules in a hyper-rule is relevant.

Example 7. Let C be a change-set; rq, 15, and r3 be three rules derived from C; and
M be a measure that indicates the probability that a rule is relevant to its respective
change-set. Then, the probability that at least one of r1, 12, or r3 is relevant to C is
calculated using the following formula:

M(r) 4+ (1 —M(r1)) * M(r2) + (1 — M(rq)) * (1 — M(rp)) * M(r3)
=1—(1—M(r1))* (1 —M(rp)) * (1 — M(r3))

If a hyper-rule were composed of rq, r2, and r3, its HCG; for measure M

74

6. Aggregation Functions

would be calculated using the formula above. Generalizing this formula to
an arbitrary number of rules, HCG; is defined as follows:

Definition 7 (HCG1). Given an interestingness measure M, with upper bound b,
and a set of rules R = {rq,...,rn}, where Vr € R: M(r) > 0, the HCG; of H(R)
for M is defined as:

HCG(H(R), M) = M(r) +) (M(r) - [T(1 -

which, for finite values of b, is equivalent to

i1 M)
HCG{(H(R),M) =b—1 |1 -
(R, M) = b =T -)
For measures without a finite upper bound (b = o), the term w is defined

to be zero. In these cases, HCGq behaves the same as CG.

HCG,: The number of rules

The second part of the HCG pair, HCG,, captures the number of rules that
were used to construct a hyper rule. From HCG; 4 we know that a rule which
expresses no correlation through its interestingness measure value should not
affect the aggregated value, HCG; satisfies this property by filtering out these
rules. Following the filtering, HCG; is simply the cardinality of this filtered
set:

Definition 8 (HCG;). Given a set of rules R = {ry,...,r,}, HCG, of R is defined
as:

HCGy(R,M) = |{r € R | M(r) > 0}
HCG: Combining HCG; and HCG;

With HCG; and HCG,; defined, HCG can simply be expressed as their or-
dered pair:

Definition 9 (Hyper Cumulative Gain). Given an interestingness measure M,
with upper bound b, and a set of rules R = {r1,...,rn}, where Yr € R: M(r) >0,
the HCG of H(R) for M is defined as:

HCG(H(R),M) = (HCGl(H(R),M), HCGZ(R,M)>

To enable ranking hyper-rules based on their HCG values, we define the
following total order relation over its value-count pairs.

75

Paper B.
Definition 10 (Total order relation over pairs). For the pairs (V1,c1) and (V3, cp)
the total order relation > is defined as:
(Vl,Cl) > (Vz,Cz) =Vi>WV (V1 =WAc 2 Cz)
Note here that HCG takes precedence over HCG,.

Since HCG incorporates the range in its definition, we provide two exam-
ples, one for a measure that has a finite range, and one for a measure that
has an infinite range.

Example 8 (Hyper Cumulative Gain over finite range). Consider a set of
rules R and an interestingness measure M with range [0, 1]:

R = {ry,r,13}
M = {(r1,0.7), (r2,0.3), (r3,0.3)}

The HCG of H(R) for M is given by:

HCG(H(R), M) = (1 —(1—0.7)%(1—03) % (1— 0.3),3> = (0.853,3)

Example 9 (Hyper Cumulative Gain over infinite range). Consider a set of
rules R and an interestingness measure M with range [0, 00):

R = {ry,r,13}
M = {(r1,0.7), (r2,0.3), (r3,0.3)}

Recall that the term % is defined to be zero when the upper bound, b, is infinity;

thus, HCG of H(R) for M is simply:
HCG(H(R),M) = (0.7+03%(1—0) +03%(1—-0)(1—-0),3) = (1.3,3)

Notice that the HCG therefore is exactly equal to CG for interestingness measures
with infinite max bound.

6.4 Centering

Most interestingness measures use the value 0 to indicate no correlation, one
example is the original support measure. When the support of a rule, say
A — B, is equal to 0O, the artifacts 2 € A and b € B have never all changed

76

6. Aggregation Functions

together in a single transaction. From the view of the support measure this is
interpreted as there being no correlation between A and B. However, interest-
ingness measures do not strictly need to use 0 as the point of no correlation,
for the measures included in our study, collective strength, lift, and odds ratio
are defined is such a way that 1 is the point of no correlation between the
antecedent and consequent of a rule. Interestingness measures such as these
must be re-centered.

Definition 11 (Centered Interestingness Measure). An interestingness mea-
sure is centered if (1) its range contains the value 0; and (2) the value 0 indicates
no correlation between the rule and the change set.

To motivate the need for this centering, consider the following example:

Example 10 (Centering). The lift interestingness measure has a range of
[0..1..c0) with 1 indicating no correlation. Consider the following set of associa-
tion rules, where the lift of each rule is also given:

{a} = {X} lift: 15
(b} = {Y} lLift: 1
e} = {Y} lift: 1

Two of the rules share the same consequent and can therefore be aggregated. We do
this twice, with and without centering.

not centered centered
{{b},{c}} — {Y} CG([1,1]) =2 {a} — {X} CG(0.5) =05
{a} —» {X} CG(1.5) =15 {{b},{c}} — {Y} CG([0,0]) =0

For the aggregated rule-set where lift was not centered before aggregation, the two
rules with Y as a consequent now rank higher than the X-rule, even though there
was no correlation between b, ¢, and Y. However, if we center before aggrega-
tion, the non-correlation is preserved after aggregation.

6.5 Aggregation of Negative Values

As stated earlier, our proposed aggregators are defined under the assumption
that measure values are positive. Including negative values, correlations, in
the aggregation complicates the situation in two ways:

1. Negative values may not have the same range as positive values for the
same interestingness measure.

77

Paper B.

2. Depending on the aggregator, the order in which negative and positive
values are mixed can have significant implications.

One possible remedy for (1) may be some sort of normalization, while for (2)
we envision that negative and positive may be aggregated separately, using
the absolute value of the negative value. However, given that our study
incorporates few interestingness measures that empirically produce negative
values, we have left this exploration for future work.

7 Experiment Design

To assess the viability of association rule aggregation and especially the mea-
surement aggregation functions proposed in section 6, we perform a large-
scale empirical study. While we believe that association rule aggregation will
be useful in a variety of problem domains, our study focuses on change rec-
ommendation. In other words, we focus on aggregating rules that share the
same consequent. This is because, as discussed in section 5, only hyper rules
of this form establish the basis for a change recommendation.

The evaluation investigates the performance of association rule aggrega-
tion when using different aggregation functions, in the context of various
software-systems and various interestingness measures. Furthermore, it in-
vestigates if and how the granularity of the underlying change history affects
the result of association rule aggregation. Two granularity levels are consid-
ered: file level and method level. Specifically, the following questions are
investigated:

RQ 1. How frequently can change recommendation be improved by association rule aggrega-
tion?

RQ 2. What is the effect of aggregating association rules for change recommendation?
RQ 3. What is the effect of aggregating association rules within each studied software-system?

RQ 4. How much does a change in granularity impact the precision gain from rule aggrega-
tion?

In total, we generated approximately 21.8 million data points to answer our
four research questions. The remainder of this section will describe our study
in detail. To start, Figure B.1 provides a high-level overview of the experiment
design.

7.1 Subject Systems

To assess the impact of association rule aggregation under a range of con-
ditions, we study 17 large systems with varying characteristics, such as fre-
quency of changes, number of file and method changes, and average number

78

7. Experiment Design

N
Subject Systems
J
) ‘ - N s
History Extraction History Filtering
- »| only keep transactions T, such that
change taxonomy: |
T < 300
| P: parsable file | | U: unparsable file |
| M: method change | | R: residual change | - ‘
(change outside all methods) Transaction Sampling
h idered: theoretical practical 1100 commits with at least
changes considerea: scenarios scenarios 1000 previous commits
coarse-grained P Pand U
A /
fine-grained Mand R M,Rand U s
) Query Creation
~ randomly split a sampled transaction T

Generate Change Recommendations

query Q

co-change
algorithm algorithm
rules rules

tarmaq

annotate with aggregate into annotate with aggregate into
measures hyper rules measures hyper rules

aggregate measures aggregate measures
w. CG, DCG, HCG w. CG, DCG, HCG

/ query Q
transaction T
\ expected
outcome |«
E=T/Q
such that
T -10< Q[<|T| -1

Evaluate Change

co-change co-change tarmaq tarmaq N
baseline DCG hyper baseline DCG hyper Recommendations
rcmd rcmd rcmd rcmd
> For each change
co-change co-change tarmaq tarmaq recommendation, calculate the
CG hyper HCG hyper CG hyper HCG hyper average precision using the
rcmd rcmd rcmd rcmd expected outcome
) p

Fig. B.1: The high level flow of our experiment design

79

Paper B.

of changes per commit. Two of the systems come from our industry partners,
Cisco Norway and Kongsberg Maritime (KM). Cisco Norway is the Norwe-
gian division of Cisco Systems, a worldwide leader in the production of net-
working equipment. We analyze their software product line for professional
video conferencing systems. KM is a leader in the production of systems for
positioning, surveying, navigation, and automation of merchant vessels and
offshore installations. We analyze the common software platform that KM
uses across various systems in the maritime and energy domain.

The other 15 systems include the well known open-source projects shown
in the first column of Table B.3. In addition to information regarding the
extracted histories (discussed in subsection 7.2), the table shows that the sys-
tems vary from medium to large size, ranging up to just over 280 000 unique
files in the largest system. Finally, the lower subtable shows the programming
languages used in each system, as an indication of heterogeneity.

7.2 History Extraction

From each of the 17 subject systems, we extract four different histories based
on up to the 50000 most recent transactions (commits). This choice is moti-
vated by our previous work in the area of software repository mining [52],
which suggests that considering such a number of transactions does not in-
clude outdated co-change information. The four differ in terms of granular-
ity and parsability. Here granularity is either file level or method level, and
parsability either includes or excludes files that can be parsed into methods.
Parsability is tied back to our history extractor’s use of SrcML [53], which
supports method-level parsing of C, C++, C#, and Java code. In addition to
these languages the change histories of our subject systems contain code writ-
ten in a multitude of other languages such as Python, Ruby, and JavaScript
(as well as build/configuration files in XML, etc.).

From the point of view of a developer in need of a change recommenda-
tion, the more fine-grained the response the better. For example, it is easier
to act on the recommendation “consider changing method M”, than the rec-
ommendation “consider changing file F”. On the other hand, there exist evo-
lutionary couplings between files where method-level change information is
unavailable. In such cases file-level recommendations are of more use than
no recommendations at all.

We explore the impact of granularity under two different scenarios: the
practical scenario and the theoretical scenario. Under the practical scenario we
acknowledge that there are many files for which we do not have method-level
information and include file-level changes in such cases. In contrast, under
the theoretical scenario we study the hypothetical situation in which we have
method-level data for all changes. Because we, in fact, do not have such
information, we approximate this situation by removing from the analysis

80

7. Experiment Design

Table B.3: Characteristics of the evaluated software systems (based on our extraction of the last
50000 transactions for each of he systems).

Software System History Unique Unique Avg. # artifacts

(in yrs) #files # artifacts in commit
CPython 12.05 7725 30090 4.52
Mozilla Gecko 1.08 86650 231850 12.28
Git 11.02 3753 17716 3.13
Apache Hadoop 6.91 24607 272902 47.79
HTTPD 19.78 10019 29216 6.99
Liferay Portal 0.87 144792 767955 29.9
Linux Kernel 0.77 26412 161022 5.5
MediaWiki 9.87 12252 12252 5.43
MySQL 10.68 42589 136925 10.66
PHP 10.82 21295 53510 6.74
Ruby on Rails 11.42 10631 10631 2.56
RavenDB 8.59 29245 47403 8.27
Subversion 14.03 6559 46136 6.36
WebKit 3.33 281898 397850 18.12
Wine 6.6 8234 126177 6.68
Cisco Norway 243 64974 251321 13.62
Kongsberg Maritime 15.97 35111 35111 5.08

Software System

Languages used*”

CPython Python (53%), C (36%), 16 other (11%)

Mozilla Gecko C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop Java (65%), XML (31%), 10 other (4%)

HTTPD XML (56%), C (32%), Forth (8%), 19 other (4%)
Liferay Portal Java (71%), XML (23%), 12 other (4%)

Linux Kernel C (94%), 16 other (6%)

MediaWiki PHP (78%), JavaScript (17%), 11 other (5%)

MySQL C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP C (59%), PHP (13%), XML (8%), 24 other (20%)

Ruby on Rails Ruby (98%), 6 other (2%)

RavenDB C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit HTML (29%), JavaScript (30%), C++ (26%), 23 other (15%)
Wine C (97%), 16 other (3%)

Cisco Norway
Kongsberg Maritime

C++, C, C#, Python, Java, XML, other build/config
C++, C, XML, other build/config

* languages used by open source systems are from http://www.openhub.net,
percentages for the industrial systems are not disclosed.

81

Paper B.

files for which we don’t have method-level data. Thus, we extract four change
histories divided into two distinct classes, practical and theoretical. These
histories are formalized as follows:

Practical Scenarios The two practical scenarios capture the reality that pars-
ing all files is infeasible. In this case we compare a pure file-level history,
with a mixed history that incorporates as much method-level informa-
tion as possible. The two histories used for the practical study are:

practical coarse-grained: A history where each transaction includes the
files changed in the respective commit. The practical coarse-grained
histories recieve the least processing. They are essentially what
is returned by ‘git log‘ after filtering as described in the next
section.

practical fine-grained: A history where each parseable file of practical
coarse-grained is replaced by the changed methods of the file to-
gether with the file’s “residual,” which is included only if there are
changes to source-code outside all of the file’s methods.

Theoretical Scenarios The theoretical scenario is used to explore the ques-
tion “what would happen if all files were parseable?”. As discussed
above, this theoretical ideal is achieved by pruning the data. It consid-
ers the following histories:

theoretical fine-grained: A history that discards from practical fine-grained
all unparseable files.

theoretical coarse-grained: A history that discards from practical coarse-
grained all unparseable files (thus theoretical coarse-grained is theo-
retical fine-grained projected back to the file level).

Table B.3 reports statistics related to the extracted change histories, which
illustrate the diversity of the systems studied. For example, the transactions
cover vastly different time spans, ranging from almost 20 years in the case of
HTTPD, to a little over 10 months in the case of the Linux kernel. The table
also shows the number of unique files changed in the practical coarse-grained
data set, as well as the number of unique artifacts changed in the practical
fine-grained data set.

We now provide an example of how a single commit is interpreted in the
four different histories:

Example 11 (History Parsing). Consider the following changes to the files 4. c,
B.cpp and C.yaml, which were all added to the same commit. First, in the C
file 4. c, a line was changed in the method mi1(int p). Secondly, in the C++ file
B.cpp, a line was changed in the method m2(int p) and a public variable was

82

7. Experiment Design

changed in the parent class. Lastly, in the configuration file C.yaml, a single line
was changed.

A.c B.cpp C.yaml
int mil(int p) { class Classl { - old_config: X
- old_lzine - public wvar_old + mnew_config: Y

+

+ mnew_line

}

public wvar_new

int m2(int p) {
- old_lzine
+ new_Lline
}
}

The changes of these three files, found in the same commit, are interpreted in four
different ways to construct four different transactions. We will now list how each
of the four types of histories studied in this paper, represent the changes found in
the commit. Note that changes which occur outside of all methods are tagged as
file:@residuals.

practical coarse-grained {4.c, B.cpp, C.yaml}
All changed files found in the commit are included as is in the transaction.

practical fine-grained {4.c:mi1, B.cpp:m2, B. cpp:@residuals, C.yaml}
C and C++ is supported for method level parsing, so fine-grained information
is included for those files. The yaml file is not supported and is included as
is.

theoretical coarse-grained {4.c, B. cpp}
All changed files which are supported for fine-grained parsing are included.

theoretical fine-grained {4.c:mi1, B. cpp:m2, B. cpp:@residuals}
Fine-grained information from the parseable files is included, the yaml file
hence is discarded.

Note that class and parameter information also is encoded on artifacts to deal with
name overloading, but this information is left out of the example above for readabil-

ity.

83

Paper B.

o

o

S 10000

c

ie)

3 1000 _

% 300

E 100 _ 555

7 30 _

S 10, |

I S

z 2]

© -

l_ 1 1 1 1
Practical Practical Theoretical Theoretical
coarse fine coarse fine

Fig. B.2: An overview of the overall distributions across all subject systems for each granularity.
Each distribution is shown annotated with the three quartiles, as well as the 99% percentile (for
some distributions the percentiles overlap, in those cases the larger percentile is on top).

7.3 History Filtering

One challenge faced by association rule mining is that large transactions lead
to a combinatorial explosion in number of association rules [12]. Fortunately,
as seen in Figure B.2, which provides violin plots of transaction size for the
four data sets, transaction sizes are heavily skewed towards smaller transac-
tions. This pattern is consistent across the individual systems. For example,
using the practical fine-grained histories Figure B.3 provides separate violin
plots for each system.

Unfortunately, as also seen in the violin plots, there exist outlier transac-
tions containing 10 000 or more artifacts. To combat the combinatorial explo-
sion problem raised by such large commits, it is common to filter the history.
In an attempt to reflect most change recommendation scenarios, we employ
a quite liberal filtering and remove only those transactions larger than 300
artifacts. The rational behind choosing this cutoff is that for each program at
least 99% of all transactions are smaller then 300 artifacts. In most cases, the
percentage is well above 99% of the available data.

7.4 Transaction Sampling and Query Creation

Conceptually, a query Q represents a set of files that a developer changed
since the last synchronization with the version control system. The key idea

84

7. Experiment Design

Transaction size distribution (log10)

Fig. B.3: An overview of the distributions of transactions sizes for each subject system (practical
fine-grained history).

behind our evaluation is to generate from each sampled transaction T, a
query that emulates a developer errantly forgetting to update some subset
of T. To this end, we partition each transaction T into a non-empty query Q
and a non-empty expected outcome E = T\ Q. In this way, we can evaluate
the ability of a recommendation tool to infer E from Q.

From each filtered history we take a representative sample of 1100 trans-
actions,* with the following two constraints:

e The transaction must contain at least three artifacts. This constraint en-
sures that, at the minimum, a transaction can be split into a query of at
least two artifacts and an expected outcome of at least one. Two artifacts
are the minimum for there to be the possibility that a recommendation
will contain at least two rules that can be aggregated.

e The transaction must have a previous history of at least 1000 trans-

4For a normally distributed population of 50000, a minimum of 657 samples is required to
attain 99% confidence with a 5% confidence interval that the sampled transactions are represen-
tative of the population. Since we do not know the distribution of transactions, we correct the
sample size to the number needed for a non-parametric test to have the same ability to reject
the null hypothesis. This correction is done using the Asymptotic Relative Efficiency (ARE). As
AREs differ for various non-parametric tests, we choose the lowest coefficient, 0.637, yielding
a conservative minimum sample size of 657/0.637 = 1032 transactions. Hence, a sample size
of 1100 is more than sufficient to attain 99% confidence with a 5% confidence interval that the
samples are representative of the population.

85

Paper B.

actions. This constraint ensures that there is a minimum number of
transactions in the training set for the mining algorithms.

7.5 Generate Change Recommendations

All queries are executed using two different targeted association rule mining
algorithms, namely TARMAQ and Co-CHANGE (introduced in section 2). Ex-
ecuting a query Q, created from a transaction T, creates a set of association
rules. The rules often differ based on the algorithm used. Moving from a
set of rules to a change-recommendation with respect to Q, requires giving
weight to the rules such that they can be sorted. In this paper we experiment
with the 40 interestingness measures shown in Table B.2.

Central to this paper, and as first envisioned in section 3, there exists a po-
tential to improve the recommendation by combining the evidence captured
in the individual association rules. We explore this potential by aggregating
rules that share the same consequent into a hyper rule, and weighing it us-
ing the measure aggregators presented in section 6. For any one query, we
therefore create four different recommendations: the original recommenda-
tion, and three recommendations produced by aggregating the rules of the
original recommendation using the aggregators CD, DCG, and HCG.

7.6 Evaluate Change Recommendations

To evaluate each recommendation we compute its average precision (AP). This
value captures the precision computed at each relevant document (i.e., each
expected outcome) and thus favors recommendations where relevant doc-
uments are toward the beginning of the list. Furthermore, we capture the
performance over a set of queries (e.g., when using one of the two rule-
generation algorithms with a given interestingness measure) using the mean
average precision (MAP). Formally average precision is defined as follows:

Definition 12 (Average Precision). Given a recommendation R, and an expected
outcome E, the average precision of R is given by:

R]
AP(R) = f P(k) * Ar(k)
k=1

where P(k) is the precision calculated on the first k files in the list (i.e., the fraction of
correct files in the top k files), and Ar(k) is the change in recall calculated only on
the k — 1" and k™ files (i.e., how many more correct files where predicted compared
to the previous rank).

Note that since we consider only rules with singleton consequents, Ar (k) will
always be equal to either zero or 1/|E| (i.e., a rank either does not contain

86

8. Results and Discussion

a file from the expected outcome, or it contains exactly one file from the
expected outcome). Table B.4 illustrates the computation of AP, P(k), and
Ar(k) given the ranked list [c, 4, f, g,d] and the expected outcome {c,d, f}.

8 Results and Discussion

This section presents the results of the study described in section 7, and is
structured according to our four research questions: We first discuss RQ 1
in subsection 8.1 on how often our technique for rule aggregation can be
applied. This is followed by RQ 2 in subsection 8.2 on how aggregation may
improve change recommendation. In subsection 8.3 we discuss RQ 3, which
considers aggregation performance over individual software systems, and
finally in subsection 8.4 we discuss RQ 4, which explores the effect of artifact
granularity in the context of aggregation. The first three research questions
consider patterns within a single history, here the practical fine-grained history
is used because it captures the largest number of changed artifacts at the
finest level of granularity, making it the most useful in real world change
recommendation scenarios. However, we did repeat the analysis of RQ 1,
RQ 2 and RQ 3 using the other histories and found effectively the same
patterns.

The final research question considers all four histories. It explores the rel-
ative performance of association rule aggregation as a function of granularity
and parsability.

8.1 Applicability of Hyper-Rules (RQ 1)

As discussed in section 3, a recommendation can be aggregated if there are
at least two rules which share the same consequent, in this section we inves-
tigate how often this scenario occurs in practice.

Table B.4: Calculation of average precision, based on ranked list [c, 4, f, g,d] and expected out-

come {c,d, f}

Rank (k) Artifact P(k) Ar(k)
1 C 1/1 1/3
2 a 1/2 0
3 f 2/3 1/3
4 g 2/4 0
5 d 3/5 1/3

average precision (AP) =
1/1%1/3+1/2%042/3%1/3+2/4%0+3/5%1/3~0.75

87

Paper B.

As explained in section 2, the two algorithms used in our study, Co-
CHANGE and TARMAQ, sit at opposing ends with respect to their approach
to rule generation. Co-CHANGE on the one hand, splits the input query into
its individual artifacts, and generates all possible singleton rules for each
artifact. Doing so increases the odds that multiple rules will share the same
consequent. On the other hand, the antecedents found in rules mined by TAR-
MAQ are dynamically determined by searching for the largest subset of the
query that has some support in the history. More often than not, these sub-
sets are close to the query, resulting in less variation in unique antecedents,
and therefore also less possibility for rules which share the same consequent.

To analyze the effect that the choice of association rule mining algorithm
has on applicability of hyper-rules, we count the number of recommenda-
tions that contain aggregable rules. The expectation here is that Co-CHANGE,
by virtue of its creating the maximal amount of rules given a query, also will
produce recommendations which are frequently aggregable. The experiment
bears out this expectation. For the practical fine-grained history the recommen-
dations generated by Co-CHANGE were aggregable 84% of the time, while the
recommendations generated by TARMAQ were aggregable only 15% of the
time.

8.2 Ability to Improve Precision (RQ 2)

The results for RQ 1 show that there are ample of opportunities for associ-
ation rule aggregation. RQ 2 considers the impact aggregation has on the
quality of the resulting recommendation. To address RQ 2, the evaluation
considers three dimensions: the rule generation algorithm used (Co-CHANGE
or TARMAQ), the interestingness measure used to rank the rules, and the ag-
gregation function used to form the hyper-rules. Hereafter we refer to an
(algorithm, measure) combination as a case. We report the result of a statis-
tical comparison of the mean average precision and two measures of effect
size. To test for statistically significant differences between original and ag-
gregated recommendations we use a one-tailed, paired Wilcoxon signed rank
tests. For each case we compare the recommendations without aggregation
against each of the aggregated recommendations.

The first of the two effect-size measures is the standardized effect size,
which is calculated by dividing the Wilcoxon p-value’s corresponding z-
statistic by the square root of the number of observations to obtain Pearson’s
r [54].

(Pearson) r = z

VN

The second measure of effect size is the non-standardized effect size, which

88

8. Results and Discussion

Positive effect of rule aggregation (Pearson’s r)

Wilcoxon Aggregator Algorithm
p<0.05 —@— CG Co-Change
X FALSE —@— DCG mmme-- TARMAQ
O TRUE —@®— HCG
Effect Size: r
Small effect Medium effect Large effect
(I) 0.1 0;2 0.3 0;4 0;5 0;6
prevalence =| O«
coverage =
specificity =
yules y -
yules g+

imbalance ratio =|
recall =

varying rates liaison =
lift =

piatetsky shapiro =
support =

two way support =

j measure =

relative risk =

odds ratio =|

klosgen

causal support =
cosine =

linear correlation coefficient =
one way support =
jaccard

kappa =

laplace corrected confidence =

Interestingness Measures

interestingness weighting dependency =
loevinger =

kulczynski =

confidence =

gini index =

leverage =

added value =

odd multiplier =
difference of confidence =
causal confidence =
sebag schoenauer =
zhang

conviction =

collective strength =

least contradiction =

descriptive confirmed confidence =

example and counterexample rate =

Fig. B.4: Effect of aggregating change recommendations using various combinations of interest-
ingness measures, mining algorithms and aggregation functions. Effect size given by Pearson’s
r.

89

Paper B.

is defined as the percentage change in mean average precision (CiMAP):

MAPuggregated - MAPoriginal “

100
MAPoriginul

(%) CiMAP =

The p-values and standardized effect sizes are shown in Figure B.4 while the
non-standardized effect sizes are shown in Figure B.6. In both figures the
interestingness measures are ordered based on the respective y-measure (r or
CiMAP) for CG over Co-CHANGE recommendations, note that this choice is
incidental and is done purely to ease later comparisons.

Figure B.4 shows both the p-values and the corresponding effect size mea-
sured, r. The results of the Wilcoxon tests are shown using hollow circles and
crosses where a circle designates a significant result (p < 0.05) and a cross a
non-significant result. To ease the effect size interpretation, vertical black bars
have been added at r = 0.1, 0.3 and 0.5, corresponding to what typically are
considered small, medium, and large effects [55]. The effect of aggregating
Co-CHANGE recommendations is shown with solid lines, while TARMAQ is
shown with dotted lines. Furthermore, color is used to differentiate the three
aggregators with CG shown in red, DCG in green, and HCG in blue.

In all cases aggregation has a positive effect on the change recommenda-
tion, meaning that the average precision of the aggregated recommendations
tend to be higher than that of their non-aggregated counterparts. This effect
is significant in all but two cases: example and counterexample rate and descrip-
tive confirmed confidence using Co-CHANGE. In terms of the size of the effect,
aggregation of TARMAQ recommendations results in relatively stable low to
medium positive effects across most interestingness measures. In the case
of Co-CHANGE there is larger spread in effect sizes with a few measures ex-
periencing no to low effect, while the remaining measures are split between
experiencing a low to medium or a medium to large effect.

As an overall positive effect has been found, we now turn to a direct com-
parison between the aggregators. First observe that CG and DCG closely fol-
low each other across Co-CHANGE and TARMAQ and across all the measures,
this indicates that their recommendations tend to be quite similar. Thus in
practice either one can be used, although we would recommend CG as its
aggregated values are easier to interpret.

The more interesting comparison is between CG/DCG and HCG, where
HCG seems to perform significantly better on a handful of interestingness
measures. To investigate the differences more closely we applied the Wilcoxon
test to just CG and HCG. The results are shown in Figure B.5. Here the in-
terestingness measures have been partitioned based on their range. Recall
that HCG incorporates the range into its definition. In Figure B.5, the bot-
tom three partitions contain the interestingness measures with finite ranges,
while the top three contain those with infinite ranges. For the interestingness
measures with finite ranges, HCG was not significantly better than CG with

90

8. Results and Discussion

the exception of two cases (laplace corrected confidence and descriptive confirmed
confidence). Furthermore, for these cases the effect was small. On the other
hand, HCG is much better for interestingness measures with infinite range.
Recall that the way HCG is defined, aggregated values for CG and HCG are
the same when the range is infinite; however, HCG also incorporates a tie
breaking mechanism based on the number of rules aggregated to create a
hyper rule. Thus the only difference between HCG and CG for the infinite
range measures is this tie breaker. It is evident that tie breaking brings a
positive effect on aggregation. Given these findings we would recommend
the CG aggregator in combination with the tie breaking mechanism of HCG.
In simpler terms, a promising rule aggregator is simply one that sums the
respective interestingness measure values and breaks ties by the number of values
in the sum.

Improvement measured by change in MAP

So far we have discussed the effect of aggregation in terms of a standard-
ized measure of effect size, however, this comes at the cost of distancing the
measure from the original measurement unit which is average precision. As a
complementary view of the data we consider CiMAP, which captures differ-
ence in MAP when recommendations are aggregated. The data is shown in
Figure B.6, which again has the interestingness measures sorted based on CG
performance using the Co-CHANGE recommendation.

Comparing the two, the top five measures when using the standardized
measure (Figure B.4) were prevalence, coverage, specificity, yules y and yules q.
There is a large overlap with the non-standardized measure: four of five mea-
sures are the same. The only difference is that prevalence is ranked lower when
using CiMAP. In Figure B.4 we found that coverage experienced a medium to
large effect of aggregation for TARMAQ and a large effect for Co-CHANGE. We
can now see how this effect size translates to one using average precision; the
MAP of aggregated TARMAQ recommendations improved by a factor of ap-
proximately 2.5 (a 150% increase), while the MAP of aggregated Co-CHANGE
recommendations improve by a factor of approximately 3 (a 200% increase).

Implications of Results

Looking beyond RQ 2, our results also support several other interesting ob-
servations. First, we found that both Co-CHANGE and TARMAQ produced
recommendations which responded well to aggregation. This should be em-
phasized, as the two algorithms significantly differ in their way of rule gener-
ation; Co-CHANGE can be thought of as generating the maximum number of
rules, while TARMAQ can be thought of as generating the minimum amount
of high relevance rules. From this we posit that there is a high likelihood that

91

Paper B.

Positive effect of aggregating with HCG compared to CG (Pearson’s r)

Wilcoxon Algorithm
<
p <0.05 ~—@— Co-Change
X FALSE —@— TARMAQ
o TRUE
Effect Size: r
Small effect Medium effect Large effect
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
. : . : ‘ : ' H H
collective strength + | | (@] (=Infinity, Infinity)
sebag schoenauer = G\
relative risk =
odds ratio = [0, Infinity)

odd multiplier = I/
conviction =
least contradiction = L//O
(=Infinity, 1]
example and counterexample rate =

added value{ X I [-0.5,1]

support =

specificity =

recall =

prevalence =

laplace corrected confidence =
kulczynski =

jaccard =

j measure = [0,1]

interestingness weighting dependency =
imbalance ratio =

coverage =

Interestingness Measures

cosine =|
confidence =
causal support =

causal confidence =|

zhang = /(

yules y -

yules g

two way support =

loevinger =

linear correlation coefficient = [-1.1]
leverage =

klosgen =

kappa =

difference of confidence = k}

descriptive confirmed confidence =

piatetskyshap\rc% X | | | | [-0.25,0.25] ‘

Fig. B.5: Positive effect of aggregating rules using the HCG aggregator compared to using the
CG aggregator. Interestingness measures are grouped based on their range.

92

8. Results and Discussion

Positive effect of rule aggregation (CiMAP)

Aggregator Algorithm
CG Co-Change
DCG ~ mmmees TARMAQ
HCG

Effect Size by Change in MAP
No Aggregation +59% +1 0.0% +1 5.0% +20I0%

coverage =
specificity =

yules y -

yules g+

imbalance ratio =

recall =

odds ratio =|

laplace corrected confidence =
relative risk =

causal support =

prevalence =

klosgen =

support =

varying rates liaison =

lift =

two way support =

j measure =

piatetsky shapiro =

73
[
=4
>
«a "
8 cosine =|
=
» linear correlation coefficient =
173
Q
S one way support
£
=
7] kappa -
o
Q .
z loevinger =
kulczynski =
added value =
leverage =
confidence =
jaccard =

difference of confidence =|

causal confidence =

zhang

gini index =

interestingness weighting dependency =
conviction =

odd multiplier =

sebag schoenauer =

least contradiction =

descriptive confirmed confidence =

example and counterexample rate =

collective strength =

Fig. B.6: Effect of aggregating change recommendations using various combinations of interest-
ingness measures, mining algorithms and aggregation functions. Effect size given by change in
mean average precision (CiMAP).

93

Paper B.

also other association rule mining algorithms will benefit from rule aggrega-
tion.

Turning to the three studied aggregation functions, our results can be
used to select an appropriate aggregation function given the algorithm and
interestingness measures which one is desirable to use. However, from a
practical standpoint, more often than not the differences between aggregators
are minimal. As an explanation of this consider Table B.5. As we can observe,
over 99% of all hyper-rules are created from two to three rules in the case of
TarmAQ, while the same number for Co-CHANGE is approximately 72%. As
the aggregators of section 6 essentially only differ in their coefficients in a
sum, the more rules which are aggregated, the larger the differences are be-
tween the aggregated values. So, as typically only 2 or 3 rules are used to
form hyper-rules, differences between the values produced by the different
aggregators are also minimized, making the final recommendations also sim-
ilar in nature. Looking forward, an interesting venue might be to theorize
aggregation functions which maximizes the benefit from only aggregating a
few rules.

Table B.5: The mean number of rules used to form each hyper-rule.

[23) [34) [45) [56) [67) [78 [89 [910) 10+

Co-CHANGE 71.69% 11.61% 5.22% 2.65% 1.88% 1.02% 0.98% 0.72% 4.20%
TARMAQ 99.6% 0.32% 4+ =0.08%

8.3 System Specific Analysis (RQ 3)

In prior sections we have explored overall trends which emerge when asso-
ciation rules are aggregated. However, as the studied software systems (see
Table B.3) differ on several aspects such as languages used, frequency/size
of commits, etc., we consider the possibility that the aggregators might ex-
hibit system-specific differences. To investigate this potential we analyze the
effect of aggregating recommendations generated for each individual soft-
ware system using the same method (Wilcoxon and Pearson’s r) as for the
system-agnostic analysis in RQ 2. The results can be found in the six plots
shown in Figure B.7, where each plot provides the result for one combina-
tion of algorithm and aggregator. Furthermore, the software systems of each
plot are ordered based on the mean effect size within each system (i.e., the
software system on top saw the most benefit from aggregation). As reference
points we have highlighted a selection of interestingness measures from the
system-agnostic analysis.

We first consider the observed range of effect sizes for the system-specific
analysis. In our system-agnostic analysis we found that aggregation of Co-

94

8. Results and Discussion

Co-Change

cpython
Cisco
gecko—dev 1
subversion
rails 4

php 4
hadoop -
mediawiki 5
ravendb
webkit 5

git -

mysql 4
httpd

wine 4

km

linux

liferay

descriptive confirmed confidence

example dnd counterexample rate
odds ratio

prevalence

coverage

— T T T T T
0.00.1020.3040.50.6

TARMAQ

CG

mediawiki 5

Software System

mysql 4
cisco
subversion 4
rails 5

git -

liferay
gecko—dev o
webkit -

km

wine 4
cpython
linux

php 4
hadoop 4
httpd
ravendb -

conviction

least contradiction

odds ratio

coverage

specificity

T T T T T T T
0.00.10.20.3040.50.6

Co-Change

DCG

cpython
cisco
gecko—dev 1
subversion
rails 4

php 4
hadoop -
mediawiki 5
ravendb -
webkit 5

git 4

mysql 4
httpd

wine

km

linux o

liferay

descriptive confirmed confidence

example dnd counterexample rate
odds ratio

prevalence

coverage

— T T T T T
0.00.1020.304050.6

TARMAQ

DCG

mediawiki 5
mysql 4
cisco
subversion 4
rails 5

git 4

liferay
gecko—dev 4
webkit 5

km

wine
cpython
linux

php 4
hadoop 4
httpd
ravendb -

conviction

least contradiction

odds ratio

coverage

specificity

T T T T T T T
0.0 0.10.20.30.40.5 0.6
Effect Size: r

Co-Change

HCG

cpython 4
cisco
gecko—dev 1
subversion

odds ratio

Q
8
S o
S o
[}
phpd 2 &
c 3
railsq 3 I
hadoopd B S
£ o
ravendb+q =
] 2
webkit1 3 ®
[
mysql4 2 E
= Q
mediawikiq 2 & Q
s 3 &
git1 3 ©
httpdd g
p i
wine %
km ’i)
linux 3
liferay
— T T T
0.00.10.20.304050.6
TARMAQ
HCG
mediawiki 5
mysql 4

subversion
cisco

rails 5

git 4

liferay
gecko—dev 4
webkit 5

km

wine o
cpython 4
linux o

php 4
hadoop 4
httpd
ravendb -

conviction

odds ratio

coverage

least contradiction

specificity

T T T T T T T
0.00.10.20.304050.6

Fig. B.7: Effect of aggregating interestingness measures across software systems. A selection
of high and low performing interestingness measures from the system-agnostic analysis are
highlighted (see Figure B.4).

95

Paper B.

CHANGE recommendations resulted in a wide range of effect sizes from essen-
tially no effect to a large effect. In the system-specific analysis we find the same
pattern. For TARMAQ we also see the same effect size range. However, there
clearly also exist differences between software systems. In particular, Linux
and liferay experience less benifit from aggregation with Co-CHANGE recom-
mendations. For interestingness measures that saw very little effect in the
system-agnostic study, there also exist specific software systems where these
result in medium to large effects, one example is example and counterexample
rate for hadoop. In the case of TARMAQ, the coverage interestingness measure
experiences a large effect for gecko-dev but only a small effect with the other
software systems.

We will now turn to the labeled interestingness measures of Figure B.7.
We first consider the interestingness measures that showed little effect from
aggregation in the system-agnostic study. For these interestingness mea-
sures we can observe the same pattern for the system-specific results; for
Co-CHANGE the descriptive confirmed confidence and example and counterexample
rate consistently has the least effect, while for TARMAQ the least contradiction
also consistently has the least effect across all systems. Furthermore, TAR-
MAQ with conviction, for which we previously saw a considerably larger ef-
fect using HCG compared to CG/DCG, can now be connected to the specific
software systems where HCG outperforms the other aggregators (e.g., cisco,
rails, git). If we turn to the interestingness measures where aggregation had
a large effect, those same measures also see the largest effect of aggregation
when observed on the software-system level (prevalence, coverage, specificity).
In addition to the extremities discussed so far, we have also highlighted odds
ratio because of its diverse results in the system-agnostic analysis. For Co-
CHANGE and CG/DCG, odds ratio saw average effect of aggregation relative
to other measures, while it had one of the largest effects for HCG. Inter-
estingly we see the same pattern reflected in the system-specific results of
Figure B.7. A similar pattern is reflected in the results for TARMAQ.

In summary the effect of aggregation on interestingness measures to a
large degree are consistent across software systems. However, some interest-
ingness measures are more prone to system specific deviations and should
therefore be evaluated on a case by case basis.

8.4 Effect of Granularity (RQ 4)

So far we have considered histories that consist of a mix of methods and files.
To gain a deeper understanding of rule aggregation this section investigates
aggregation’s behaviour across all four histories. As discussed in subsec-
tion 7.2, we differentiate between theoretical and practical histories, which can
be summarized as follows:

96

8. Results and Discussion

Theoretical histories where only parseable artifacts are considered.
Practical histories where all available artifacts are considered.

The next two subsections present results for these two classes of histories.

Theoretical Histories

For the theoretical histories, all artifacts that could not be parsed have been
removed. We can therefore focus purely on the effect of granularity without
the blurring effect caused when histories share unparseable files. To begin
with, Table B.6 shows the percentage of recommendations that were aggre-
gable given histories containing only file level changes, and then separately
only method changes. While there is little change for TARMAQ, there is nearly
a ten percent increase in applicability for Co-CHANGE when moving from
the theoretical fine-grained history to the theoretical coarse-grained history. At
first, this may seem paradoxical, as the number of artifacts increases with
finer granularity; however, the opportunities for aggregation may indeed de-
crease with finer granularity. To see this, consider the visualization shown
in Figure B.8. Here, the association rules at the method level have different
consequents, while if we lift the rules to the file level, the consequent now
becomes shared. Thus, the rules at the method level are non-aggregable (by
virtue of having different consequents), while the rules on the file level are
aggregable. The converse can not happen however; if two file-level rules are
non-aggregable, then all the corresponding method-level rules will be non-
aggregable.

Table B.6: Applicability for the theoretical histories.

theoretical coarse-grained theoretical fine-grained
Co-CHANGE 90% 80%
TARMAQ 14% 13%

While there are more opportunities for aggregation at the file level, both
levels provide ample of opportunity; thus we turn to RQ 2, and consider
the impact of aggregation using the recommendation based on the non-
aggregated rules as a baseline. This involves three steps:

e Starting with the theoretical coarse-grained history, for each combination
of algorithm, aggregator, and measure, calculate CIMAP (see subsec-
tion 8.2)

e Also calculate CIMARP for the theoretical fine-grained history.

e Finally, compute the difference between theoretical coarse-grained CiIMAP
and theoretical fine-grained CIMAP.

97

Paper B.

Non-aggregable on method level
aggregable on file level

O-.

O
O

-

Non-aggregable on file level
non-aggregable on method level

5
O.

O

- ~

N
- ~
- ~

o O

[lfiles O methods ---method-level rule — file-level rule

Fig. B.8: Effect of changing granularity level on whether association rules are aggregable or not.

Say that for an interestingness measure, aggregation with the coarse data im-
proved the recommendation by 50% (CiMAP), for that same measure with the
fine-grained data, the recommendation improved by 60%. The delta CIMAP,
given in percentage points, is then 60% — 50% = 10 percentage points.

The results are shown in Figure B.9. In the plot, the theoretical coarse-
grained history forms the baseline at 0% and the data-set has been split into
six sub-plots one for each pairing of algorithm and aggregator. In a sub-plot,
each circle gives the result for a single interestingness measure. If a circle
lies above the line at y = 0, aggregation achieved a higher CIMAP with the
theoretical fine-grained history than with the theoretical coarse-grained history. If
the circle lies below the line the converse is true. Note that the scatter-plot
nature of Figure B.9 (and Figure B.10) is intentional; the focus here is not on
individual interestingness measures but rather on overall trends that emerge
when granularity is altered.

Lastly, we performed a Wilcoxon test for each algorithm, measure and
aggregator to test for differences in CiMAP of the two granularities. The
result are captured by either hollow or filled circles in Figure B.9, where a
hollow circle indicates that there was a significant difference. Note that the
location of the circle on the y-axis reflects the mean, while the Wilcoxon test
compares the distribution of the underlying values, as such it is possible for
a circle whose mean is near zero to still show a significant difference.

Overall, Figure B.9 shows that granularity has a stronger effect on the rec-
ommendations generated by Co-CHANGE than those generated by TARMAQ:
the mean improvement for the theoretical fine-grained over the theoretical coarse-
grained histories is 18.1 percentage points for Co-CHANGE and 7.5 percentage

98

8. Results and Discussion

Co-Change
CG DCG HCG
100 - o ®
:—-U? o) ®© o ° *® o ©
g 50 - o o o o o
Q] o oo o o o
o °o o o o 0o °
D (0 Cas 00y, Va2 e D o 0P D0 P 00y,)0 s aYomon S 0T
E o [} o [} o R
o)
[$]
9]
RS
o TARMAQ :
< coarse baseline
= CG DCG HCG |
5 :
P 100 -
©
e 50
- o
L] % L] . % L] ®
L3 000 . 00
0 0 ety o O et s 00y 0, P % P e % L0 4
o . o OG0 e o e o
o ° o .
o o o

Fig. B.9: Change in the effect of aggregation when moving from theoretical coarse-grained to
theoretical fine-grained histories.

points for TARMAQ. To conclude, the positive effect of aggregation is almost
universally more pronounced when using the finer-grained histories.

Practical Histories

In the previous section, only files that could be parsed were considered.
However, in practice, transactions often include files that cannot be parsed
for various reasons. Example unparseable files include configuration files,
binary files, documentation, or simply those of unsupported programming
languages. Being able to recommend these types of files is a key advantages
of evolutionary coupling when compared to approaches that use static or
dynamic source-code analysis. Thus this section repeats the analysis of the
previous section and also compares results from the theoretic versus practical
histories.

To begin with, Table B.7 presents aggregation’s applicability for Co-CHANGE
and TArRMAQ. Overall the values are slightly higher then those of Table B.6.
Considering the differences between the fine and coarse grained histories,
they is clearly muted when compared to those seen using the theoretical his-
tories. Thus the data shows the expected damping down of the differences
caused by the shared unparseable files.

Finally, we consider precision breakdown shown in Figure B.10, which
parallels that shown in Figure B.9. Compared to the theoretical histories,
there is less difference between the granularity levels (note the difference in

99

Paper B.

Co-Change
CG DCG HCG
50- ° o
o oo o oo 0
25._) o) o) .
o (<] o o o
o o

0, 00

o o
o oo 00%o0
0°%0 ©0°%°%0°07,000 %% 0%, ® ®0 %0 00 0% 0%, o

[eXe] o
0o, o (e} o o o [ee]
0P © °0%°0°%0,00% o, *

-25-

Delta CiMAP (percentage points)

TARMAQ :
CG DCG HCG coarse l?asehne
50-
L] ° .
25- % % ° -
0 .u N * .o. '. o . .'- o, % ° .o. o ° ... o. el . .‘.-.'... %op * o .00. O.O. ...] K3 ..o % .‘ ® e
-25- .

Fig. B.10: Change in the effect of aggregation when moving from practical coarse-grained to prac-
tical fine-grained granular histories.

Table B.7: The percentage of recommendations which were aggregable given histories containing
only a mix of method and file changes, or only file changes.

practical coarse-grained practical fine-grained
Co-CHANGE 89% 84%
TARMAQ 15% 15%

the scale used on the y-axis). Thus while granularity again has a stronger ef-
fect on the recommendations generated by Co-CHANGE than those generated
by TARMAQ. The effect is not as large: the mean improvement for the practical
fine-grained over the practical coarse-grained histories is 9.5 percentage points
for Co-CHANGE and 6.5 percentage points for TARMAQ. The damping effect
is also evident in that the Wilcoxon tests find fewer significant differences.

To conclude, aggregation provides less improvement on the practical his-
tories compared to the theoretical histories. Still, the trend for both Co-
CHANGE and TARMAQ mirror the theoretical histories: change recommenda-
tion based on fine-grained histories benefits more from aggregation than that
based on the coarse-grained histories.

8.5 Addendum I: Time Complexity

In our experiment architecture, rule aggregation is implemented as a post-
processing step which is not optimal with respect to execution time. In pro-
duction the generation of hyper rules would be incorporated into an existing

100

9. Threats to validity

rule mining algorithm. Given our non-optimal setup we still found aggrega-
tion to have low overhead. In Table B.8 we have summarized the observed
execution times for the rule aggregation step, the numbers are given in mil-

Table B.8: Execution time for rule aggregation in the context of our experiment.

algorithm minimum ql median mean g3 maximum
1 Co-Change 0.00596 0.56860 2.83200 25.9400 13.1300 8185.0
2 TARMAQ 0.00572 0.03004 0.09465 0.4525 0.3395 499.7

liseconds. The median execution time for Co-CHANGE was 2.83ms, while the
median for TARMAQ was 0.09ms. Aggregation over Co-CHANGE recommen-
dations naturally see higher execution times compared to TARMAQ as the
Co-CHANGE algorithm tend to generate more rules. However, only 0.001% of
aggregations took more than 1 second.

8.6 Addendum II: Absolute Performance

In earlier sections we have shown that rule aggregation significantly improves
the average precision across all interestingness measures. In doing so we have
only considered the relative difference between aggregated and non-aggregated
recommendations. However, it may also be of interest to see the absolute,
non-relative, performance of aggregated recommendations. We provide this
data in Figure B.11 using the MAP. Here the interestingness measures are or-
dered based on non-aggregated MAP (e.g., non-aggregated difference of confi-
dence achieved the highest MAP for the Co-CHANGE algorithm).

As seen in the figure, the aggregated recommendations always achieve a
higher MAP score compared to non-aggregated recommendations®. In par-
ticular, the highest achieving interestingness measures are further improved
through aggregation; referring back to Figure B.4, difference of confidence for
Co-CHANGE obtained a significant effect size of r = 0.2, while for TARMAQ,
gini index obtained a significant effect size of r = 0.25. Perhaps of more in-
terest, a large number of aggregated interestingness measures achieve higher
MAP than the single non-aggregated interestingness measure with highest
MAP.

9 Threats to validity

Problem Domain used in Evaluation: We evaluated hyper-rules in the con-
text of change recommendations. However, the different interestingness mea-
sures studied might not fit well into all problem domains [14]. Still, since we

SExceptions are the descriptive confirmed confidence and example and counterexample rate, where
aggregation was also found to have a non-significant effect in Figure B.4.

101

Paper B.

Aggregator cG DCG HCG None
Co-Change TARMAQ

difference of confidence 4 gini index 4

added value support 4

leverage piatetsky shapiro 4

confidence j measure 4

descriptive confirmed confidence two way support 4

example and counterexample rate 4 confidence 4

sebag schoenauer 4 descriptive confirmed confidence

causal confidence example and counterexample rate 4

conviction 4 sebag schoenauer 4

loevinger 4 causal confidence

one way support 4 conviction 4

gini index 4 loevinger 4

least contradiction 5 klosgen 4

interestingness weighting dependency leverage 4

j measure added value 4

two way support 4 difference of confidence 4

jaccard 4 interestingness weighting dependency 4

7] e

o kappa 4 least contradiction 4
F

8 piatetsky shapiro 5 one way support 4
=

%) cosine odd multiplier 4
%]
[0]

§7 linear correlation coefficient zhang 4
£

g klosgen jaccard o
9]
=2

< support 4 kappa 4

odd multiplier 5 cosine 4

zhang 4 linear correlation coefficient 4

kulczynski 4 prevalence

causal support 4 imbalance ratio 4

laplace corrected confidence kulczynski 4

lift < causal support 4

varying rates liaison laplace corrected confidence

prevalence 4 odds ratio 4

odds ratio 4 yules q 4

yules g yules y 4

yules y lift 4

imbalance ratio 4 varying rates liaison 4

relative risk coverage

recall relative risk

specificity = recall

collective strength collective strength

coverage specificity 4

T T T T T T T T T
0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20

Fig. B.11: MAP of both aggregated and non-aggregated recommendations across different inter-

MAP

estingness measures and mining algorithms.

102

9. Threats to validity

evaluated hyper-rules by looking at the difference in precision compared to not
using hyper-rules, rather than looking at the actual precision, we believe that
the effect of the problem domain is minimized.

Aggregation of only Positive Measures: As discussed in section 4, interest-
ingness measures typically capture either only positive, or both positive and
negative correlations between the antecedent and consequent of a rule. In our
evaluation however, we only consider positive correlations. While the exact
interpretation of negative correlation may differ from measure to measure,
the overall interpretation in the context of change recommendations would
be: “if this artifact is changed, what artifacts are typically not changed?”,
while we are more interested in the question: “if this artifact is changed,
what other artifacts are also typically changed?”. Moreover, existing targeted
association rule mining algorithms show a clear bias toward mining only
positive rules (typically based on artifacts that have changed together in the
past). Thus the interestingness measures that have the ability to measure
both negative and positive correlations will be heavily skewed towards the
positive correlations. Looking forward however, we plan to explore possi-
ble beneficial ways of handling the aggregation of both positive and negative
correlation.

Implementation: We implemented and thoroughly tested all algorithms, ag-
gregators and interestingness measures studied in this paper in Ruby. How-
ever, we can not guarantee the absence of implementation errors which may
have affected our evaluation.

Variation in software systems: We evaluated hyper-rules on two industrial
systems and 15 large open source systems. These systems vary consider-
ably in size and frequency of transactions (commits), which should provide
an accurate picture of the performance of hyper-rules in various contexts.
However, despite our careful choice, we are likely not to have captured all
variations.

Commits as basis for evolutionary coupling: The evaluation in this paper is
grounded in predictions based on the analysis of patterns found in the change
histories. The transactions that make up the change histories are however
not in any way guaranteed to be “correct” or “complete”, in the sense that
they represent a coherent unit of work. Non-related files may be present
in the transactions, and related files may be missing from the transactions.
However, the included software-systems in our evaluation all (except KM)
use Git for version control. As Git provides developers with tools for history-
rewriting, we do believe that this might cause more coherent transactions.

103

Paper B.

10 Related Work

We distinguish related work on aggregating association rules, clustering and
pruning association rules, and on comparing interestingness measures. Fur-
thermore, we specifically discuss the relation between hyper-rules, and the
more familiar techniques of closed and maximal rule mining.

Aggregating Association Rules: To the best of our knowledge, no other
work has investigated the aggregation of association rules with the goal of
combining the evidence (or interestingness) provided by individual rules.
Massoud et al. address the challenge of mining multi-dimensional association
rules that aim to combine and relate association rules generated from two or
more different sets of transactions [56]. They do not aggregate rules that
combine evidence for the same conclusion but aim to create aggregate rules
that span the dimensions of all transactions.

Clustering and Pruning Association Rules: Several authors investigate
methods to discover the most informative or useful rules in a large collec-
tion of mined association rules, for example by clustering rules that convey
redundant information, or by pruning non-interesting rules. Thus, while our
method aims to aggregate rules to combine all existing evidence, this work
tries to keep (or only generate) the “most important” rules. Toivonen et al.
present association rule covers as a method to reduce the number of redundant
rules [16]. Their method first groups rules which shared the same conse-
quent, and then filters this set by considering the size of the antecedent in
combination with the interestingness measures of the rules. No association
rules or interestingness measures are aggregated. Kannan and Bhaskaran
build upon Toivonen et al.’s work, and instead consider only rules with high
interestingness values when generating clusters of rules sharing the same
consequent [57]. In particular, they conclude that extracting clusters from
the half of rules with highest interestingness value yields a minimal loss of
information. Zaki introduces the closed frequent itemset as an alternative as-
sociation rule mining technique that only generate non-redundant association
rules [58]. The number of redundant rules produced by the new approach is
dramatically smaller than the rule set from the traditional approach but this
is achieved at generation time, i.e., no association rules or interestingness
measures are aggregated. Baralis et al. investigate an association rule min-
ing technique that combines schema constraints (i.e., rule constraints) and rule
taxonomies to filter out redundant rules [59]. As with Zaki’s approach, this is
achieved at generation time, and no association rules or interestingness mea-
sures are aggregated. Liu et al. introduce direction setting rules as a method
of summarizing the set of rules for a human user [60]. Essentially, direction
setting rules are simple rules which capture part of the same relationships
also captured in larger rules, i.e., they are more concise.

104

10. Related Work

Selecting and Comparing Interestingness Measures: Tan et al. presents a
technique, which given a set of desired properties, can be used to select an ap-
propriate interestingness measure for that context [14]. In this paper, we have
not distinguished between interestingness measures in that regard, as such
we went for completeness rather than strictly limiting the set of measures
to those appropriate for change recommendation. We attempted to control
for the potential domain mismatch by only considering the relative improve-
ment between the original and aggregated recommendations. Closely related
to Tan et al., Geng and Hamilton survey a range of interestingness measures
and discuss properties such as surprisingness and conciseness [15]. In a com-
plementary paper, Vaillant et al. clusters interestingness measures based on
empirical performance, rather than theoretical properties [30]. Mcgarry sur-
veys a range of interestingness measures, not only relating to association
rules, but patterns for knowledge discovery in general [61]. Of particular
relevance here is his discussion of understandability of patterns, for exam-
ple, the support measure is objectively easier to understand for an end-user
compared to the collective strength. When hyper-rules are constructed, we
also increase complexity, and perhaps lower understandability of patterns in
the change recommendation. As the understanding of patterns is subjective,
future work may want to qualitatively study how hyper-rules are interpreted
and understood by end-users. Le and Lo evaluate 38 interestingness mea-
sures in the context of specification mining, typically; ”if File.close has been
called, File.open must have been called earlier” [62]. We believe that such
temporal, sequence rules, also can benefit from association rule aggregation.
In particular, association rule aggregation should be applicable when multi-
ple sequences overlap at at least one point.

Relation to closed and maximal rules: As the number of association rules
often grows unwieldy in conventional association rule mining, techniques
such as closed and maximal rule mining has been proposed. Both techniques
can be used to effectively reduce the number of generated rules, while still
being left with the most relevant. A closed rule is a rule for which no super-
seding rules have the same support [63], while a maximal rule is a rule for
which there are no superseding rules that are frequent [64, 65]. In relating
closed and maximal rules to hyper-rules, it is most accurate to think about
techniques to identify closed and maximal rules as rule mining algorithms, in
the same manner that Co-CHANGE and TARMAQ are rule mining algorithms.
In this paper we have considered Co-CHANGE and TARMAQ as they are tar-
geted association rule mining algorithms, which fit the problem domain of
change recommendation. In doing so, we explored hyper-rules which aggre-
gate rules with the same consequent, as previously stated, hyper-rules could
also be formed based on other selection criteria. Association rule aggregation
is agnostic to the origin of the generated rules, it is up to the user to define
rule clusters which could benefit from aggregation. We therefore strongly

105

Paper B.

believe that there is potential for association rule aggregation over closed or
maximal rules. Not only could this further reduce the number of rules, but
also improve relevance of the resulting rule set.

11 Concluding Remarks

Association rules capture knowledge found in the relationships between ar-
tifacts. In this paper we present a technique for rule aggregation. The re-
sulting hyper rules combine knowledge from sets of conventional association
rules in a beneficial way. This paper extends and complements our initial
work on this topic, which introduced the notion of hyper rules [17]; how-
ever, this paper is self contained and makes the following contributions: (1)
We identify an opportunity, missed by traditional recommendation systems,
to increase accuracy using the evidence of multiple applicable rules in sup-
port of a particular conclusion. (2) We provide a theoretical foundation for
rule aggregation through the concept of hyper rules. (3) We present three
aggregation strategies for forming hyper rules, where two are adapted from
Information Retrieval and one is introduced in this paper. (4) We provide for-
mal proofs that all studied aggregators satisfy the set of desirable properties
given in Average Precision 4 for non-negative values. (5) We perform a large
empirical study where hyper rules are evaluated in the context of change
recommendation. We include systems from our two industry partners, Cisco
and Kongsberg Maritime, as well as 15 open source systems. Furthermore,
for each system, four different histories are studied. The histories vary in
terms of their granularity (file level versus method level) and parsability. Our
findings are as follows: (result.a) We find that, depending on the under-
lying history and rule mining algorithm, between approximately 13% and
90% of the generated change recommendations are candidates for associa-
tion rule aggregation. (result.b) Of the 40 studied interestingness measures,
we find that rule aggregation significantly improves the precision of change
recommendation for all but two interestingness measures when used with
Co-CHANGE and for all measures when used with TARMAQ. (result.c) We
find that aggregation performance varies across software-systems, but the
effect is consistently positive. (result.d) In our study of history granularity,
we find that typically, finer grained histories benefit more from rule aggre-
gation than the coarse histories. Furthermore, histories where all artifacts
are parseable, also see more benefit from rule aggregation than histories that
contain a mix of parseable and unparseable artifacts. We conjecture that this
is the case because those histories only contain source-code artifacts, which
are more likely to show relevant co-change patterns.

Directions for Future Work: In the future we would like to address the
following. (1) Generally, different association rules may be generated from

106

11. Concluding Remarks

the same transactions. When aggregating such rules it might be beneficial
to account for these overlaps. (2) While we found that the studied aggrega-
tors did not benefit from negative correlations, we plan to explore alternative
aggregation possibilities in the future. (3) We also plan to consider how the
tie-breaking mechanism used by HCG can be used to create more effective
variants of other aggregation functions. (4) The experiments studied the ef-
fect of aggregation using all the rules generated by Co-CHANGE and TARMAQ.
A natural extension would be to explore interestingness constraints. For ex-
ample, the use of a minimum support value to produce frequent hyper rules,
where only frequent rules are aggregated. (5) We would like to investigate the
effect of rule aggregation on other transaction definitions, e.g., sliding win-
dows. (6) We also plan to investigate the behavior of hyper rules when using
other association rule mining algorithms from the change-recommendation
domain. (7) This will be complimented by the exploration of uses for hyper
rules in other domains. (8) Finally, with regards to weighting hyper rules,
rather than calculating aggregated measures, we conjecture that new inter-
estingness measures can be defined directly in terms of the hyper rules.
Acknowledgements:

This work is supported by the Research Council of Norway through the
EvolvelT project (#221751/F20) and the Certus SFI (#203461/030). Dr. Binkley
is supported by NSF grant IIA-1360707 and a J. William Fulbright award.

Appendix: Proofs

Within this section we formally prove that DCG and HCG satisfies the prop-
erties of Average Precision 4. As expressed earlier, we have limited our study
of aggregation functions to positive values. We leave out the proof for CG as
it is simply the algebraic sum and therefore naturally satisfies all properties
of Average Precision 4.

11.1 Proof for Discounted Cumulative Gain

Theorem 1. DCG (Definition 6) satisfies the properties in Definition 4 for non-
negative values of an interestingness measure M.

Proof. Let M be an interestingness measure, R be a set of rules with non-
negative interestingness values, and V = [vy,...,v,] be an ordered list of
interestingness values of rules in R for measure M, such that Vi <j. v; > v;.
Let 7 be an arbitrary rule in R, and R’ be equal to R \ {r}. Then, there exists
a v € V such that M(r) = v;. We define U = [uy,...,u, 1] as the ordered
list of interestingness values of rules in R’ for measure M. U is equal to V

107

Paper B.

except that vy is removed from it, and we have Vi < j. u; > uj. Then:

Vi<i<k.v=u; (B.6)
Vk<i<n.v,=u;_4 (B.7)

The first property in Average Precision 4, which concerns Rs of size one,
is trivial. To prove that the second property in Average Precision 4 holds
for DCG, we compute the difference between the DCG of R and the DCG
of R' and show that for vy > 0, this difference is positive, and for vy = 0,
this difference is equal to zero. Let DCG(R, M) and DCG(R’, M) denote the
DCGs of R and R’ for the interestingness measure M, respectively.

DCG(R,M) — DCG(R,M) = f

P P B .
= logr(i+1) = logr(i+1)
Eq B.6,B.7 v — i
= 8
Z * loga(i +1) * logy (n+1) (B.8)

Note that both terms in the last line are always non-negative. Now, we con-
sider two cases based on the value of v;:

v > 0 — Since v, > 0, the two terms in Eq. B.8 cannot be zero simultane-
ously. Because this requires v, = 0, and at the same time Vi > k,v; = v;1.
The latter implies v, = vy > 0, which contradicts with the former. Therefore,
in this case, there is always at least one positive term in Eq. B.8. Thus:

DCG(R, M) — DCG(R', M) >0 (B.9)
O

This proves that the second property in Definition 4 holds when M(r) = vy
is positive.

v = 0 — In this case DCG(R, M) — DCG(R’, M) = 0. This follows from
the original assumption that the rules in V' are ordered according to their
absolute values. Therefore, in Eq. B.8 all v;s are equal to zero.

108

11. Concluding Remarks

11.2 Proof for Hyper Cumulative Gain

We now prove that HCG satisfies the monotonicity properties of Average
Precision 4 for non-negative values of an interestingness measure M. We start
by introducing a new operator, and two lemmas that are used in the proof.

Definition 13 (Correlative sum). Let ay and ap be real numbers. For any nonzero
real number b, we define the operator Sy, as

b—&ll.
b

ay Spar = a1 + a.

Lemma 1 (Properties of correlative sum). For any nonzero real number b, the
correlative sum Sy, is commutative, and associative.

Proof. Sy, is commutative:

b—a
ay Spap = aq + bl'az
- a1b + arb — aqas
- b
4yt b— a» 4
= dap Sb ai
Sy, is associative:
b—a b— (a1 + 5% a
(a1 Sp az) Sp az = a1 + bl'ﬂ2+ (@ bb 2)'ﬂ3
b+ ah—aay, b— (ABRIED))
B b b 3
a1b + arb — ayap b2 — (ﬂlb + arb — alﬂz)
= + 5 - a3
b b
;b + agb? — ayazb + azb? — ajazb — azazb + ayazaz
= 3
o b—ay axb+asb—aa;
= a1 + b b
b—aq b—ap

=m+— (a2 + - az)
=ay Sy (a2 Sp a3)

An important implication of this lemma is that S, can be applied to a
sequence of numbers independent from the ordering of the elements in the
sequence.

109

Paper B.

Lemma 2. For any nonzero real number b, let L = {I3,1y, ..., 1, } be a sequence of
real numbers. Let S,(L) denote 11 Sy I - -+ 1,,_1 Sy L. Then

Sp(L) =1 + Z

n
=2

i—1 .

(LT - E])) (B.10)
j=1

and for any given real number |, we have:

Sy(LU{I}) :sb(L)+z.1‘[(1_%). (B.11)
lieL

Proof. The proof for both parts is straightforward after expanding the poly-
nomials.

An implication of Equation B.11 is that, for any sequence of real numbers
L={h,1, .. 1y}, and any arbitrary real number [in L, we have:

Su(L) = Ss(L\ (1) = 1+ T] (-) 5.12)
LeL\{I}

Theorem 2. HCG (Correlative sum 9) satisfies the properties of Correlative sum 4
for non-negative values of an interestingness measure M.

Proof. Let M be a normalized interestingness measure with upper bound
b e R\{0},R={r,...,ry} beasetof rules, and Ly; = (M(r1), - M(ry))
be the sequence of non-negative interestingness values for the rules in R.
HCG of H(R) for M defined in Definition 9 can be rewritten as follows:

HCG(H(R), M) = (Sb(LM), m) (B.13)

where m is given by
m=|{r € R| M(r) > 0}|

The first property in Correlative sum 4, which concerns Rs of size one, is
again trivial. Let r be an arbitrary rule in R, and ! denote M(r). To prove
that the second property in Correlative sum 4 holds for HCG, we compare
the HCGs of R and R\ {r}, and consider three cases based on the value of
M(r):

M(r) > 0 — In this case, we need to show that the HCG of R is greater
than the HCG of R\ {r}.

HCG(H(R), M) > HCG(H(R\ {r}), M) (B.14)
=P (S, m) > (Su(La\ 1), m—1)
YL 5 (L) 2 Sy(Lu\ 1)) (B.15)

110

References

To show that inequality B.15 holds we show that S;,(Lar) — Sp(Las \ {1}) is
non-negative, which, according to Equation B.11, is equivalent to showing
that

ZJGLM\{Z}
This inequality holds because I = M(r) > 0, and for all /; € Ly \ {I} the

term 1 — 4 is non-negative (because /; is at most b). Since m > m — 1, in-
equality B.15 holds, completing the case for M(r) > 0.

M (r) = 0 - In this case, we have to show that the HCGs of R and R\ {r}
are equal.

HCG(H(R),M) = HCG(H(R\ {r}), M) (B.16)
Eq B13

= (So(La), m) = (Sp(Lar\{1}), m)

To do so, we have to show that S;(Lpr) = Sp(Las \ {!}). This is proven by
forming Sy (L) — Sp(Lp \ {!}), and replacing | with zero in the right-hand
side of Equation B.11. Therefore, completing the proof.

So far, we have proven that HCG satisfies the properties in Correlative
sum 4 for interestingness measures that have a finite upper bound. If the
upper bound of an interestingness measures is infinity, then like CG, HCG
becomes the sum of interestingness values of all rules in R. Therefore, it
satisfies all the properties in Correlative sum 4.

References

[1] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software
and Change Request Repositories,” in International Software Metrics
Symposium (METRICS). 1IEEE, 2005, pp. 29-37. [Online]. Available:
http:/ /ieeexplore.ieee.org/articleDetails.jsp?arnumber=1509307http:

/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1509307

[2] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more
efficient static software change impact analysis method,” in ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE). ACM, 2008, pp. 84-90. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1512475.1512493

[3] X. Ren, E Shah, E Tip, B. G. Ryder, and O. Chesley, “Chianti:
a tool for change impact analysis of java programs,” in ACM

111

[10]

[11]

References

SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2004, pp. 432-448. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1035292.1029012

M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact
analysis of change requests on source code based on inter-
action and commit histories,” in International Working Confer-
ence on Mining Software Repositories (MSR), 2014, pp. 162-171.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2597096http:
//dx.doi.org/10.1145/2597073.2597096

S. Bohner and R. Arnold, Software Change Impact Analysis. CA, USA:
IEEE, 1996.

A. R. Yazdanshenas and L. Moonen, “Crossing the bound-
aries while analyzing heterogeneous component-based software
systems,” in IEEE International Conference on Software Main-
tenance (ICSM). IEEE, 2011, pp. 193-202. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSM.2011.6080786http:/ /ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6080786

A. Podgurski and L. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 965-979,
1990. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=58784

S. H. Yong and S. Horwitz, “Reducing the Overhead of Dynamic
Analysis,” Electronic Notes in Theoretical Computer Science, vol. 70, no. 4,
pp- 158-178, dec 2002. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S1571066104805838

C. Bird, T. Menzies, and T. Zimmermann, “Past, Present, and
Future of Analyzing Software Data,” in The Art and Science of
Analyzing Software Data, 2015, pp. 1-13. [Online]. Available: http:
/ /www.sciencedirect.com/science/article/pii/B978012411519400001X

S. Eick, T. L. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,”
IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12,
2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=895984

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on
Fine-Grained Change Information,” in Working Conference on Reverse
Engineering (WCRE). 1EEE, 2008, pp. 42—46. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=4656392

112

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

References

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=170035.170072

M. Kamber and R. Shinghal, “Evaluating the Interestingness of Charac-
teristic Rules,” in SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 1996, pp. 263-266.

P-N. Tan, V. Kumar, and]. Srivastava, “Selecting the right
objective measure for association analysis,” Information Systems,
vol. 29, no. 4, pp. 293-313, jun 2004. [Online]. Available: http:
/ /linkinghub.elsevier.com /retrieve /pii/S0306437903000723

L. Geng and H. J. Hamilton, “Interestingness measures for data
mining,” ACM Computing Surveys, vol. 38, no. 3, sep 2006. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=1132960.1132963

H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Man-
nila, “Pruning and Grouping Discovered Association Rules,” in Work-
shop on Statistics, Machine Learning, and Knowledge Discovery in Databases,
Heraklion, Crete, Greece, 1995, pp. 47-52.

T. Rolfsnes, L. Moonen, S. Di Alesio, R. Behjati, and D. W. Binkley,
“Improving change recommendation using aggregated association
rules,” in International Conference on Mining Software Repositories (MSR).
ACM, 2016, pp. 73-84. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2901739.2901756

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 1998, pp. 190-198. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=738508

R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1463228

A. T. T. Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.

113

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

References

[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=1324645

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the Analysis of Evolutionary Coupling for Software
Change Impact Analysis,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 1EEE, mar 2016,
pp- 201-212. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7476643

T. Ball, J. Kim, and H. P. Siy, “If your version control system
could talk,” in ICSE Workshop on Process Modelling and Empirical
Studies of Software Engineering, 1997. [Online]. Available: http:
/ /csalpha.ist.unomaha.edu/{~}hsiy/research/visual.pdf

D. Beyer and A. Noack, “Clustering Software Artifacts Based on
Frequent Common Changes,” in International Workshop on Program Com-
prehension (IWPC). 1EEE, 2005, pp. 259-268. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=1421041

A. E. Hassan and R. Holt, “Predicting change propagation in
software systems,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 2004, pp. 284-293. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1357812

Y. Kodratoff, “Comparing Machine Learning and Knowledge Discovery
in DataBases: An Application to Knowledge Discovery in Texts,”
in Machine Learning and Its Applications, LNAI 2049. Springer, 2001,
ch. 1, pp. 1-21. [Online]. Available: http://link.springer.com/10.1007/
3-540-44673-7{_}1

C.C. Aggarwal and P. S. Yu, “A new framework for itemset generation,”
in ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), no. 2. ACM, 1998, pp. 18-24. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=275487.275490

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic
itemset counting and implication rules for market basket data,”
in ACM SIGMOD International Conference on Management of Data
(SIGMOD), vol. 26, no. 2. ACM, jun 1997, pp. 255-264. [Online].
Available: http://portal.acm.org/citation.cfm?doid=253262.253325http:
/ /portal.acm.org/citation.cfm?doid=253260.253325

H. Hofmann and A. Wilhelm, “Visual Comparison of Association
Rules,” Computational Statistics, vol. 16, no. 3, pp. 399-415, sep 2001.
[Online]. Available: http:/ /link.springer.com/10.1007 /5001800100075

114

References

[30] B. Vaillant, P. Lenca, and S. Lallich, “A Clustering of Interestingness
Measures,” in Lecture Notes in Artificial Intelligence (LNAI), 2004, vol.
3245, pp. 290-297. [Online]. Available: http://link.springer.com/10.
1007 /978-3-540-30214-8{_}23

[31] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
Regression Trees, 1984, vol. 19.

[32] T. Wu, Y. Chen, and J. Han, “Re-examination of interestingness
measures in pattern mining: a unified framework,” Data Mining and
Knowledge Discovery, vol. 21, no. 3, pp. 371-397, nov 2010. [Online].
Available: http:/ /link.springer.com/10.1007 /s10618-009-0161-2

[33] B. Gray and M. E. Orlowska, “CCAIIA: Clustering categorical attributes
into interesting association rules,” in Lecture Notes in Computer
Science (LNCS), 1998, vol. 1394, pp. 132-143. [Online]. Available:
http:/ /link.springer.com /10.1007 /3-540-64383-4{_}12

[34] P. Smyth and R. Goodman, “An information theoretic approach to
rule induction from databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 4, no. 4, pp. 301-316, 1992. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/149926/

[35] C. J. Van Rijsbergen, Information Retrieval. — Butterworth-Heinemann,
1979.

[36] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37-46, apr
1960. [Online]. Available: http://epm.sagepub.com/cgi/doi/10.1177/
001316446002000104

[37] W. Klosgen, “Problems for knowledge discovery in databases and their
treatment in the statistics interpreter explora,” International Journal of
Intelligent Systems, vol. 7, no. 7, pp. 649-673, 1992. [Online]. Available:
http:/ /doi.wiley.com/10.1002 /int.4550070707

[38] S. Kulczynski, Die Pflanzenassoziationen der Pieninen. Imprimerie de
I"Université, 1928.

[39] I. J. Good, The estimation of probabilities: An essay on modern
Bayesian methods. MIT Press, 1966. [Online]. Available: https:
/ /mitpress.mit.edu/books/estimation-probabilities

[40] J. Azé and Y. Kodratoff, “Evaluation de la résistance au bruit
de quelques mesures d’extraction de régles d’association.” in
Extraction et Gestion des Connaissances (EGC), vol. 1, no. 4. Hermes
Science Publications, 2002, pp. 143-154. [Online]. Available: http:
/ /dblp.uni-trier.de/rec/bib/conf/f-egc/AzeK02

115

References

[41] G. Piatetsky-Shapiro, “Discovery, analysis, and presentation of strong
rules,” Knowledge discovery in databases, pp. 229—-238, 1991.

[42] K. Pearson, “Mathematical Contributions to the Theory of Evolution.
III. Regression, Heredity, and Panmixia,” Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 187, pp. 253-318, jan 1896. [Online]. Available:
http:/ /rsta.royalsocietypublishing.org/cgi/doi/10.1098 /rsta.1896.0007

[43] J. Loevinger, “A systematic approach to the construction and evaluation
of tests of ability.” Psychological Monographs, vol. 61, no. 4, pp. i-49,
1947. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/
h0093565

[44] F. Mosteller, “Association and Estimation in Contingency Tables,”
Journal of the American Statistical Association, vol. 63, no. 321, pp. 1-28,
mar 1968. [Online]. Available: http://www.tandfonline.com/doi/abs/
10.1080/01621459.1968.11009219

[45] Y. Y. Yao and N. Zhong, “An Analysis of Quantitative Measures
Associated with Rules,” in Methodologies for knowledge discovery and
data mining (LNCS 1574). Springer, 1999, pp. 479-488. [Online].
Available: http://www.springerlink.com/index/e62m8gpjeyklnbeq.
pdfhttp://link.springer.com/10.1007 /3-540-48912-6{_}64

[46] M. Sebag and M. Schoenauer, “Generation of rules with certainty and
confidence factors from incomplete and incoherent learning bases,” in
Proceedings of the European Knowledge Acquisition Workshop (EKAW), 1988,
p- 28.

[47] J.-M. Bernard and C. Charron, “Bayesian implicative analysis, a method
for the study of oriented dependencies,” Mathématiques, Informatique et
Sciences Humaines, vol. 135, pp. 5-18, 1996.

[48] G. U. Yule, “On the Association of Attributes in Statistics,” Philosophical
Transactions of the Royal Society of London, vol. 194, pp. 257-319, 1900.

[49] ——, “On the methods of measuring association between two at-
tributes,” Journal of the Royal Statistical Society, vol. LXXV, pp. 579-652,
1912.

[50] T. Zhang, “Association Rules,” in Knowledge Discovery and Data Mining.
Current Issues and New Applications, 2000, no. ¢, pp. 245-256. [Online].
Available: http://link.springer.com/10.1007 /3-540-45571-X{_}31

[51] K. Jarvelin and J. Kekdldinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Transactions on Information Systems, vol. 20, no. 4, pp.

116

References

422446, oct 2002. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=582415.582418

[52] L. Moonen, S. Di Alesio, T. Rolfsnes, and D. W. Binkley, “Exploring the
Effects of History Length and Age on Mining Software Change Impact,”
in IEEE International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), sep 2016, pp. 207-216.

[53] M. L. Collard, M. J. Decker, and]. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code:
A Tool Demonstration,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, sep 2013, pp. 516-519. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/ 6676946/

[54] R. Rosenthal, Meta-analytic procedures for social research. SAGE, 1991.

[55] J]. Cohen, “A power primer.” Psychological —Bulletin, vol.
112, no. 1, pp. 155-159, apr 1992. [Online]. Avail-
able: http:/ /www.nature.com/doifinder/10.1038/141613a0http:/ /doi.
apa.org/getdoi.cfm?doi=10.1037/0033-2909.112.1.155

[56] R. B. Messaoud, S. L. Rabaséda, O. Boussaid, and R. Missaoui,
“Enhanced mining of association rules from data cubes,” in International
Workshop on Data warehousing and OLAP (DOLAP). ACM, 2006, p. 11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1183517http:
/ /portal.acm.org/citation.cfm?doid=1183512.1183517

[57] S. Kannan and R. Bhaskaran, “Association Rule Pruning based on Inter-
estingness Measures with Clustering,” Journal of Computer Science, vol. 6,
no. 1, pp. 3543, dec 2009.

[58] M. J. Zaki, “Generating non-redundant association rules,” in
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 2000, pp. 34-43. [Online]. Available: http:
/ /portal.acm.org/citation.cfm?doid=347090.347101

[59] E. Baralis, L. Cagliero, T. Cerquitelli, and P. Garza, “Generalized
association rule mining with constraints,” Information Sciences, vol. 194,
pp. 68-84, 2012. [Online]. Available: http://linkinghub.elsevier.com/
retrieve /pii/S0020025511002659

[60] B. Liu, W. Hsu, and Y. Ma, “Pruning and summarizing the discovered
associations,” in SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 1999, pp. 125-134. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=312129.312216

117

[61]

[62]

[63]

[64]

[65]

References

K. McGarry, “A survey of interestingness measures for knowledge dis-
covery,” The Knowledge Engineering Review, vol. 20, no. 01, p. 39, 2005.

T.-d. B. Le and D. Lo, “Beyond support and confidence: Explormg
interestingness measures for rule-based specification mining,” in
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 331-340. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7081843

M. J. Zaki and C.-]. Hsiao, “CHARM: An efficient algorithm for closed
association rule mining,” 2nd SIAM International Conference on Data
Mining, pp. 457-473, 1999. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.17.2956{&}rep=rep1{&}type=pdf

R. J. Bayardo, “Efficiently mining long patterns from databases,” ACM
SIGMOD Record, vol. 27, no. 2, pp. 85-93, jun 1998. [Online]. Available:
http:/ /cs.sungshin.ac.kr/{~}de/Seminar/ps{_}files/sigmod98{_}max.
pdfhttp:/ /portal.acm.org/ citation.cfm?doid=276305.276313

D.-I. Lin and Z. M. Kedem, “Pincer-search: A new algorithm for
discovering the maximum frequent set,” 1998, pp. 103-119. [Online].
Available: http://link.springer.com/10.1007 /BFb0100980

118

Paper C

Practical Guidelines for Change Recommendation
using Association Rule Mining

Leon Moonen, Stefano Di Alesio, Dave W. Binkley
and Thomas Rolfsnes

Accepted for publication in the main research track of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
September 3-7, 2016.

(© 2016 IEEE
The layout has been revised.

1. Introduction

Abstract

Association rule mining is an unsupervised learning technique that infers relation-
ships among items in a data set. This technique has been successfully used to analyze
a system’s change history and uncover evolutionary coupling between system arti-
facts. Evolutionary coupling can, in turn, be used to recommend artifacts that are
potentially affected by a given set of changes to the system. In general, the quality
of such recommendations is affected by (1) the values selected for various parame-
ters of the mining algorithm, (2) characteristics of the set of changes used to derive
a recommendation, and (3) characteristics of the system’s change history for which
recommendations are generated.

In this paper, we empirically investigate the extent to which certain choices for
these factors affect change recommendation. Specifically, we conduct a series of sys-
tematic experiments on the change histories of two large industrial systems and eight
large open source systems, in which we control the size of the change set for which
to derive a recommendation, the measure used to assess the strength of the evolution-
ary coupling, and the maximum size of historical changes taken into account when
inferring these couplings. We use the results from our study to derive a number
of practical guidelines for applying association rule mining for change recommenda-
tion.

1 Introduction

A well-know effect of the continued evolution of a software system is the
increasing disorder or entropy in the system: as a result of repeated changes,
the number and complexity of dependencies between parts of the code grows,
making it increasingly difficult for developers to foresee and reason about the
effects of changes they make to a system.

Automated change impact analysis techniques [1-4] aim to support a devel-
oper during system evolution by identifying the artifacts (e.g., files, methods,
or classes) affected by a given change. Traditionally, these change impact
analysis techniques are based on static or dynamic dependency analysis [5]
(for example, by identifying the methods that call a changed method). More
recently, promising alternative techniques have been proposed that identify
dependencies by means of evolutionary coupling. These alternative approaches
avoid certain limitations in existing techniques. For example, static and dy-
namic dependency analysis are generally language-specific, making them
unsuitable for the analysis of heterogeneous software systems [6]. In addi-
tion, they can involve considerable overhead (e.g., dynamic analysis’ need
for code-instrumentation), and tend to over-approximate the impact of a
change [7].

Evolutionary couplings differ from the ones found through static and dy-

121

Paper C.

namic dependency analysis, in that they are based on how the software was
changed over time. In essence, evolutionary coupling aims to build on the de-
veloper’s inherent knowledge of the dependencies in the system, which can
manifest themselves by means of commit-comments, bug-reports, context-
switches in an IDE, etc. In this paper, we consider co-change as the basis for
uncovering evolutionary coupling. Co-change information can, for example,
be extracted from a project’s version control system [8], from its issue tracking
system, or by instrumenting the development environment [9].

The most frequently used method for mining evolutionary coupling from
co-change data is association rule mining (also called association rule learn-
ing) [10]. Various variants on the approach have been described in the soft-
ware engineering literature [11-14]. All of these approaches have in common
that the technique is tuned with a number of parameters. While studying the
literature, we found that there is little to no practical guidance on the tun-
ing of these parameters, nor has there been a systematic evaluation of their
impact on change recommendation quality. Moreover, we conjecture that, in
addition to parameters of the mining algorithm, the recommendation quality
is also affected by characteristics of the change set that is used to derive the
recommendation, and by characteristics of the system’s change history from
which the recommendation is generated.

In this paper, we empirically investigate the extent to which these factors
affect change recommendation. Specifically, we conduct a series of systematic
experiments on the change histories of two large industrial systems and eight
large open source systems. In these experiments we control the size of change
set used to derive recommendations, the measure used to assess the strength
of the evolutionary coupling, and the maximum size of historical changes
taken into account when inferring association rules. We use the results from
our study to derive practical guidelines for applying association rule mining
to construct software change recommendations.

Contributions: This paper presents three key contributions: (1) we inves-
tigate a previously unexplored area of tuning association rule mining pa-
rameters for software change recommendation; (2) we evaluate how recom-
mendation quality is impacted by both characteristics of the change set used
to derive a recommendation, and characteristics of change history used for
learning; (3) we derive practical guidelines for improving the application of
association rule mining in the derivation of software change recommenda-
tions.

Overview: The remainder of this paper is organized as follows: section 2
provides background on targeted association rule mining. section 3 describes
limitations of classical approaches. section 4 describes the setup of our empir-
ical investigation whose results are presented in section 5. Finally, section 6
presents the related work and then section 7 provides some concluding re-
marks.

122

2. Association Rule Mining

2 Association Rule Mining

Agrawal et al. introduced the concept of association rule mining as a discipline
aimed at inferring relations between entities of a dataset [10]. Association rules
are implications of the form A — B, where A is referred to as the antecedent,
B as the consequent, and A and B are disjoint sets. For example, consider the
classic application of analyzing shopping cart data: if multiple transactions
include bread and butter then a potential association rule is bread — butter.
This rule can be read as “if you buy bread, then you are also likely to buy butter.”

In the context of mining evolutionary coupling from co-change informa-
tion, the entities involved are the files of the system! and a collection of trans-
actions, denoted 7 (e.g., a history of commits to the version control system).
A transaction T € 7T is the set of files that were either changed or added while
addressing a given bug or feature request, hence creating a logical dependence
between the files [15].

As originally defined [10], association rule mining generates rules that
express patterns in a complete data set. However, some applications can
exploit a more focused set of rules. Targeted association rule mining [16] focuses
the generation of rules by applying a constraint. One example constraint
specifies that the antecedent of all mined rules belongs to a particular set of
files, which effectively reduces the number of rules that need to be created.
This reduction can drastically improve rule generation time [16].

When performing change impact analysis, rule constraints are based on a
change set, for example, the set of files that were modified since the last com-
mit. This set is also referred to as a query for which to search for potential
impact. In the constrained case, only rules with at least one changed entity
in the antecedent are created. The output of change impact analysis is the set
of files from the system historically changed alongside the elements of the
change set. For example, given the change set {a,b,c}, change impact anal-
ysis would uncover files that were changed when a, b, and ¢ were changed.
The resulting impacted files are those found in the rule consequents. These
tiles can be ranked based on the rule’s interestingness measure.

To our knowledge, only a few targeted association rule mining algorithms
have been considered in the context of change impact analysis: Zimmerman
et al. [11], Ying et al. [12], Kagdi et al. [13], and our previous work [14]. In
contrast, simpler co-change algorithms have been well studied in a variety of
contexts [15, 17-19]. Existing targeted association rule mining algorithms and
the co-change algorithms differ in terms of which subsets of the change set
are allowed in the antecedent of generated rules. Consider, for example, the

1 Other granularities are possible, and our choice of file-level changes is without
loss of generality as our algorithms are granularity agnostic: if fine-grained co-change
data is available, the algorithms will relate methods or variables just as well as files.

123

Paper C.

subsets of the change set C = {a,b,¢,d}:
powerset(C) = {{},

{a},{b},{c} {d}, (1)
{a,b},{a,c},{a,d}, {b,c}, {b,d}, {c,d}, (2)
{a,b,c},{a,b,d},{a,c,d}, {b,cd}, (3)
{a,b,c,d}} (4)

Both Zimmerman’s and Ying’s algorithms constrain the antecedent of rules

to be equal to the change set, and hence only generate rules based on line
4 (i.e., rules of the form {a,b,c,d} — X). At the other end of the spectrum,
co-change algorithms only generate rules from the singleton sets in Line 2,
such as {a} — X or {b} — X. In our previous work, we introduced TARMAQ,
the most versatile among the existing algorithms [14]. TARMAQ generates
rules whose antecedent can be from any of lines 1, 2, 3 or 4. The particular
line used is dynamically chosen based on the maximal overlap between the
change set C and the transactions that make up the history.

3 Problem Description

Change impact analysis takes as input a set of changed entities (e.g., the files
changed in a system), referred to as a change set or query, and outputs a set of
potentially impacted entities. A common strategy for change impact analysis
is to use association rule mining to capture the evolutionary couplings between
such entities. In particular, entities are considered to be coupled if they have
changed together in the past. Furthermore, the strength of a coupling de-
pends on how frequently the entities have changed together. The stronger
the coupling between two entities, the more likely it is that the entities are
related to each other, and hence that one is impacted by changes to the other.

The strength of an evolutionary coupling is usually assessed using an
interestingness measure applied to the association rules. The literature re-
ports over 40 of these measures, which have been applied in a variety of
domains [20]. It has been shown that the particular measure chosen has a
significant impact over the ranking of rules, and consequently on the quality
of the recommendations generated [21-23].

The following four examples illustrate how performance is affected by the
two configuration parameters interestingness measure and the filter size, the
size of the query and expected outcome, and finally the system characteris-
tics.

Example 1. Consider the following history T of transactions:
T = [{ach {b,c} {ab,c}, {a,b,xy 2}, {y 2}, {x v 2}]

124

3. Problem Description

and the change set C = {a, b} where, based on T and C, the following four rules
have been mined.2 For each rule three measures, confidence «, prevalence ¢, and
recall p [21] are given in parentheses. The confidence (recall) measures the ratio
between the number of transactions where the antecedent and consequent changed,
and the number of transactions where only the antecedent (consequent) changed.
Prevalence measures the percentage of transactions in the history where the conse-
quent changed.

a,b—c (k=1/2, ¢ =3/6, p=1/3)
a,b—x (k=1/2, ¢=2/6, p=1/2)
a,b—y (k=1/2,¢=3/6, p=1/3)
a,b—z (k=1/2, $=3/6, p=1/3)

In the example, the confidence values suggest that the four rules are all
equally likely to hold, while prevalence suggests that a,b — x is inferior
to the others, because x is changed only twice in 7. On the other hand, recall
suggests the opposite, that a,b — x is more likely than the others, because
the co-occurrence of {a,b} and x in {a,b,x,y,z} is more significant than the
co-occurrence of {a,b} and other files that changed more often without both
a and b. However, one’s intuition matches the suggestion made by ¢ since a
and b have a stronger relation with ¢ than with x. This is because ¢ appears
also singularly with a and b, while x tends to change together with y and z.

In general, the particular interestingness measure (or combination thereof)
used to rank the rules is a parameter of the change recommendation algo-
rithm. There exist a number of such parameters that affect how rules are
ranked, and recommendations are generated.

Example 2. Consider again the history T of transactions:

T = [{a,c}, {b,c}, {a,b,c}, {abx vz}, {v.z}, {x,y,2}]

and the change set C = {a,b}. However, assume that transactions larger than
three files are discarded from the history when generating rules and calculating
their interestingness. Based on C and the filtered history, only the rule a,b — c is
mined.

Here, x, y, and z will not be recommended, because {a,b, x,y,z}, the change
set containing evidence for their recommendation, has been filtered out of 7.
Intuitively, filtering out larger transactions from the history avoids generating
rules from change sets that contain potentially unrelated files, and is a strat-

125

Paper C.

egy used by most approaches [11, 12, 14]. However, filtering too aggressively
may remove legitimate evidence of evolutionary coupling.

Values for configurable parameters are not the only criteria that can affect
the recommendations generated.

Example 3. Consider the same history T of transactions:

T =[{ac}h {b,c} {a b} {abxy 2} {y.2}, {xyz}]

and the change sets C1 = {a} and Cy = {a,b}. The following rules are mined for
C1 and Cz.

rules for Cq rules for Cp
a—b a,b—c
a—c a,b— x
a—x ab—y
a—y a,b—z
a—z

C1 and C; have different sizes, and hence, when used as queries they provide
different amounts of evidence from which to make a recommendation. For
example, consider the recommendation of c. In this case, C; contains only a
in support of the recommendation while C, contains both 4 and b and thus
likely provides stronger support. While intuitively, larger queries can be ex-
pected to lead to stronger recommendations, queries that are too large may
contain potentially unrelated files, degrading the quality of the recommen-
dation.

An inverse argument applies to the expected outcome, the set of files that
we seek to recommend. First consider the goal of predicting any one file
from the expected outcome. Clearly, the larger the expected outcome, the
easier the task of predicting one of them correctly. However, our goal is to
recommend all of the files in the expected outcome. In that case, intuitively,
a smaller expected outcome should be easier to recommend, as it is easier for
a query to provide the necessary supporting evidence.

Finally, characteristics of the change history can affect the precision of a
recommendation.

Example 4. Consider two transaction histories T and T, from systems Sy and Sy,
respectively. Assume that the transactions of T are on average larger than those
of Tz because of differences in development processes. For example, S; might be

126

3. Problem Description

Table C.1: Characteristics of the last 30 000 transactions of the evaluated software systems

Software System

Nr. of Avg. commit History covered

files size (in years)
Cisco Norway 41701 6.20 1.07
Kongsberg Maritime 35111 5.08 15.97
Git 3574 1.95 10.42
HTTPD 10021 4.80 19.78
Linux Kernel 19768 2.14 0.48
LLVM 20745 441 2.15
JetBrains Intelli] 36162 3.38 1.58
Ruby on Rails 5346 2.25 5.78
Subversion 2915 2.76 7.61
Wine 6679 247 4.61

Software System

Languages used”

Cisco Norway
Kongsberg Maritime
Git

HTTPD

Linux Kernel

LLVM

JetBrains Intelli]
Ruby on Rails
Subversion

Wine

C++, C, C#, Python, Java, XML, other build/config
C++, C, XML, other build/config

C (45%), shell script (35%), Perl (9%), 14 other (11%)
XML (56%), C (32%), Forth (8%), 19 other (4%)

C (94%), 16 other (6%)

C++ (71%), Assembly (15%), C (10%), 16 other (4%)
Java (71%), Python (17%), XML (5%), 26 other (7%)
Ruby (98%), 6 other (2%)

C (61%), Python (19%), C++ (7%), 15 other (13%)

C (97%), 16 other (3%)

* language information from http://www.openhub.net,
percentages for the industrial systems are not disclosed.

developed with an agile process, where small change sets are committed frequently
while Sy was developed with a less nimble process, where large change sets are

committed less often.

In this last example, queries and expected outcomes for 7; are likely to be
smaller than those for 7;. Thus entailing the implications discussed in Exam-
ple 3, and also potentially differing impacts from transaction filtering which
was described in Example 2.

127

Paper C.

4 Empirical Study

We perform a large empirical study to assess the extent to which the quality
of change recommendations generated using targeted association rule mining
is affected by (1) the values of various parameters of the mining algorithm, (2)
characteristics of the change set used to derive the recommendation, and (3)
characteristics of the system’s change history. We use as a reference mining
approach from our previous work, which has proven to perform consistently
better than the previous state-of the art for software change impact analy-
sis [14]. Our study investigates the performance of targeted association rule
mining in the context of several software-systems, and several parameters
configurations. Specifically, we investigate the following four research ques-
tions:

RQ 1. To what extent does the interestingness measure affect the precision of change
recommendation?

RQ 2. To what extent does the size limit used to filter the transactions of the history
affect the precision of change recommendation?

RQ 3. To what extent do query size and expected outcome size affect the precision of
change recommendation?

RQ 4. To what extent does the average commit (transaction) size of the history affect
the precision of change recommendation?

The remainder of this section details our evaluation setup, and is organized
as follows: in subsection 4.1 we describe the software-systems included in
the study. Sections 4.2 and 4.3 describe the interestingness measures and
the history filtering. Subsection 4.4 describes two central concepts for the
evaluation, query generation and query execution. Subsection 4.5 explains the
generation of change recommendations. Finally, subsection 4.6 explains how
we measure performance.

4.1 Subject Systems

To assess change recommendation in a variety of conditions, we selected ten
large systems having varying size and transaction frequency. Two of these
systems come from our industry partners, Cisco Norway and Kongsberg
Maritime (KM). Cisco Norway is the Norwegian division of Cisco Systems,
a worldwide leader in the production of networking equipment. In particu-
lar, we consider a software product line for professional video conferencing
systems developed by Cisco Norway. KM is a leading company in the pro-
duction of systems for positioning, surveying, navigation, and automation of

128

4. Empirical Study

merchant vessels and offshore installations. Specifically, we consider a com-
mon software platform KM uses across various systems in the maritime and
energy domain.

The other eight systems are well known open-source projects. Table C.1
summarizes descriptive characteristics of the software systems used in the
evaluation. The table shows that the systems vary from medium to large in
size, with up to forty thousand different files committed in the transaction
history. For each system, we considered the 30000 most recent transactions
(commits). This value represents a balance between too short a history, which
would lack sufficient connections, and too long a history, which is hard to
process efficiently and can contain outdated couplings caused by, for exam-
ple, architectural changes. Across all ten systems, 30 000 transactions covers a
significantly different development time span, ranging from almost 20 years
in the case of HTTPD, to 6 months in the case of the Linux kernel. Most of the
systems are heterogeneous, being developed in more than one programming
language. Finally, we note that the median commit size for all the selected
systems is one.

4.2 Interestingness Measures

Mining of change recommendations often uses or combines the support and
confidence measures from the data mining community to separate interesting
from uninteresting rules [11, 12, 14, 24]. However, as introduced in section 3,
over 40 interestingness measures have been defined in the literature to mea-
sure the strength of the evolutionary couplings mined using association rules.
These measures are usually defined based on a probabilistic interpretation of
the occurrence in the history of the rules antecedent and consequent. For
example, given the rule A — B the probability P(A) is the percentage of
transactions from the history that include A, while the probability P(A, B)
is the percentage of transactions in the history that contain both A and B.
Therefore, the interestingness of the rule A — B is usually defined as a
function of P(A), P(B), and various combinations thereof obtained through
negations, fractions, and conditional operators. In this paper, we consider
39 interestingness measures commonly used in several data mining and ma-
chine learning applications. Due to space limitations, we only report their
names in Table C.2, and refer the reader to the original sources for the defi-
nitions [25, 26].

4.3 History Filtering

Several approaches for mining change recommendations start by filtering the
history to remove transactions larger than a given size. This common heuris-
tic seeks to avoid mining from transactions that do not contain relevant in-

129

Paper C.

Table C.2: Overview of the 39 interestingness measures considered in our study

Interestingness Measure

1 Added Value 21 Least Contradiction

2 Casual Confidence 22 Leverage

3 Casual Support 23 Lift

4 Collective Strength 24 Linear Correlation Coefficient
5 Confidence 25 Loevinger

6 Conviction 26 Odd Multiplier

7 Cosine 27 Odds Ratio

8 Coverage 28 One Way Support

9 Descriptive Confirmed Confidence 29 Prevalence

10 Difference Of Confidence 30 Recall

11 Example and Counterexample Rate 31 Relative Risk

12 Gini Index 32 Sebag Schoenauer

13 Imbalance Ratio 33 Specificity

14 Interestingness Weighting Dependency 34 Support

15] Measure 35 Two Way Support

16 Jaccard 36 Varying Rates Liaison
17 Kappa 37 Yules Q

18 Klosgen 38 Yules Y

19 Kulczynski 39 Zhang

20 Laplace Corrected Confidence

formation on the evolutionary coupling of files, such as in the case of license
updates or refactoring [11, 12, 24, 27]. Removing transactions from the history
also has the effect of significantly speeding up the rule generation process.

This paper considers seven different transaction filtering sizes: 2, 4, 6, §,
10, 20, and 30. Note that 30 is the threshold used in the work of Zimmermann
et al. [11]. Starting from this value, we progressively consider more restrictive
filtering. For each filter size s, we generate a filtered history Hs, from which
we mine the association rules used to generate recommendations. In addi-
tion, we also consider the unfiltered history H. Since H can be thought of as
filtered with an infinite filter size, we simply refer to these as eight transaction
filtering sizes in the rest of the paper.

4.4 Query Generation and Execution

A challenge in evaluating change recommendation techniques is what “gold
standard” can be used to compare the generated recommendation against. A
common strategy [11-13] is to take a transaction T from the change history
and randomly partition it into a non-empty query Q and a non-empty ex-

130

4. Empirical Study

pected outcome E = T\ Q. Since the files in a transaction are considered to
be logically coupled [15], this stategy provides a suitable gold standard. The
evaluation then assesses how well a change recommendation technique can
recover expected outcome E from query Q using the transactions that came
before T in the change history.

From the history of each system, we randomly sample 1500 transactions,
which are used to generate 1500 queries (and their related expected out-
comes). Each query is executed for each of the 39 interestingness measures
reported in Table C.2, using each of the eight filtering sizes introduced in sub-
section 4.3. This setup yields a total of 1500 - 39 - 8 = 468 000 data points for
each system, where each data point is a recommendation for a query.

3

4.5 Generating Change Recommendations

All queries are executed using TARMAQ, the targeted association rule mining
algorithm we introduced in previous work [14]. Recall from section 2 that
executing a query Q creates a set of association rules. In order to efficiently
generate recommendations, TARMAQ only considers rules whose consequent
contains a single file [14]. Generating a change recommendation for Q con-
sists of sorting the rules generated for Q according to their interestingness
score, and returning the ranked list of the consequents of the rules. We only
consider the largest interestingness score for each consequent, i.e., we do not
use rule aggregation strategies, such as the ones we proposed in previous
work [26].

4.6 Performance Measure

To evaluate a recommendation we use average precision (AP), which is com-
monly used in Information Retrieval to assess the quality of a ranked list [28]:

Definition 1 (Average Precision). Given a recommendation R, and an expected
outcome E, the average precision of R is given by:

AP(R) £ f P(k) * Ar(k)
k=1

3 For a normally distributed population of 30000, a minimum of 651 samples is
required to achieve a 99% confidence level with a 5% confidence interval. Since we do
not know the distribution of transactions, we correct the sample size to the number
needed for a non-parametric test to have the same ability to reject the null hypothesis.
The correcting is done using the Asymptotic Relative Efficiency (ARE). As AREs dif-
fer for various non-parametric tests, we choose the lowest coefficient, 0.637, yielding a
minimum sample size of 651/0.637 = 1022 transactions. Hence, sampling 1500 trans-
actions is more than sufficient to achieve a 99% confidence level with a 5% confidence
interval.

131

Paper C.

Table C.3: Example of average precision calculation

Consider {c,d, f} as expected outcome in the following list:

Rank (k) File P(k) Ar(k)
1 C 1/1 1/3

2 a 1/2 0

3 f 2/3 1/3

4 g 2/4 0

5 d 3/5 1/3

AP=1/1-1/3+1/2-0+2/3-1/3+2/4-0+3/5-1/3~0.75

Table C.4: Commit size frequency and cumulative percentage of all transactions considered.

commit size ‘ 1 2 3 4 5 6 7 8 9 10 (10,20] (20,30] >30
frequency ‘157636 48903 23801 13767 8561 5546 3829 2814 2103 1611 6536 1778 2717

cumulative % | 56.4% 73.9% 824% 87.3% 904% 924% 93.7% 947% 955% 96.1% 98.4% 99.0% 100.0%

where P(k) is the precision calculated on the first k files in the list (i.e., the fraction
of correct files in the top k files), and Ar(k) is the change in recall calculated only
on the k — 1" and k" files (i.e., how many more correct files were predicted compared
to the previous rank).

Since we consider only rules with a single consequent, Ar(k) will always
be equal to either zero or 1/|E|, because a rank either does not contain a
file from expected outcome E, or it contains exactly one file from E. Ta-
ble C.3 illustrates the computation of AP, P(k), and Ar(k) given the ranked
list [c,a, f, g, d] and the expected outcome {c,d, f}.

As an overall performance measure for a group of factors (e.g., a given
filtering size and interestingness measure) we use the mean average precision
(MAP) computed over all the queries executed using the given factor combi-
nation.

5 Results

This section presents the results of the study described in section 4. A repli-
cation package is provided online.*

We begin by analyzing a key descriptive statistic, the commit size distri-
bution, which is shown in Table C.4. Because the majority (90.4%) of the
commits contains less than six files, we focus the remainder of our analysis
on this dominant subset of the data.

* https://evolveit.bitbucket.io/publications/ase2016/replication/

132

5. Results

Table C.5: ANOVA Model - Explanatory variables and their pair-wise interactions, ordered by
F-value, which provides a measure of the significance of the variable/interaction.

Explanatory Variable Df Mean Sq F-value p-value
expected outcome size 1 2244 15930 <0.0001
program 9 1643 11667 <0.0001
filter size 1 1411 10018 <0.0001
measure 38 452 3212 <0.0001
query size 1 130 923 <0.0001
expected outcome sz:filter size 1 122 864 <0.0001
program:query size 9 55 390 <0.0001
program:expected outcome size 9 47 332 <0.0001
program:filter size 9 27 194 <0.0001
query size:filter size 1 21 149 <0.0001
query size:measure 38 21 145 <0.0001
query size:expected outcome sz 1 20 142 <0.0001
expected outcome size:measure 38 5 38 <0.0001
filter size:measure 38 5 33 <0.0001
program:measure 342 4 28 <0.0001

5.1 Analysis of Explanatory Variables

Central to our analysis is an ANOVA, used to explore the significance of the
five explanatory variables program, filter size, expected outcome size, interesting-
ness measure (or measure for short), and query size, together with all ten of
their pairwise interactions. The Q-Q Plot of the residuals (left out) finds that
these residuals follow a sufficiently normal distribution, especially consid-
ering ANOVA’s performance in the presence of large data sets such as the
nearly five million data points considered here.

The model is shown in Table C.5, with terms ordered by their F-value.
Even though all fifteen terms are highly statistically significant, the five vari-
ables make a larger contribution than the interaction terms (i.e., have larger
F-values).

5.2 Impact of Interestingness Measures
Using the ANOVA, we continue our analysis by considering the first research
question:

RQ 1 To what extent does the interestingness measure affect the precision of change
recommendation?

To visually explore the influence of interestingness measures, Figures C.1-C.4
show interaction plots of measure with respectively program, query size, ex-
pected outcome size, and filter size (Where inf indicates no filtering). The overall

133

Paper C.

pattern, evident in these graphs, is that measure is largely independent of
program, query size, expected outcome size, and filter size. Statistically, the inter-
actions are significant primarily due to a few interestingness measures that
“buck the trend” (producing line crosses in the plots). This visually evident
“mostly independent” observation is supported by the comparatively low F-
values for the four interactions involving “measure” (they are four of the five
smallest in the model shown in Table C.5).

The low F-values and the interactions plots support the notion that there
are consistent best measures for change recommendation based on evolution-
ary coupling. Not surprisingly, there is no single best measure. Tukey’s hon-
estly significant difference (HSD) test finds that eleven measures populate the
top equivalence class. These are shown in Table C.6. Note that even though
their MAP values are slightly different, the measures in this class are not
statistically different from each other. Also observe that Table C.6 includes
the classic measures confidence and support. Their presence reinforces a result
from the recent work of Le and Lo [25]. While their work considers a different
problem (the effect of different interestingness measures in rule-based spec-
ification mining), they too conclude that the standard measures work well.
Thus in summary for RQ1, we find that to a large extent measure’s influence
on average precision is consistent across differences in other variables and

0.5

0.4

MAP

0.2
|

jetb rails svn httpd git llvm cisco km linux wine

Program

Fig. C.1: Interaction plot of measure and program. The measures are shown unlabeled to avoid
cluttering the plot.

134

5. Results

MAP
0.30 0.35 0.40 0.45
| | | |

0.25
|

0.20
|

Query Size

Fig. C.2: Interaction plot of measure and query size. The measures are shown unlabeled to avoid
cluttering the plot.

that the traditional measures are top performers.

5.3 Impact of Transaction Filtering

Next, we turn to answering our second research question:

RQ 2 To what extent does the size limit used to filter the transactions of the history
affect the precision of change recommendation?

The results for this question are rather surprising. When filtering the history
it is common to remove large commits as they are assumed to reflect licencing
changes and alike. Prior work has typically used 30 as a cut off, while some
experiments have used values as high as 100 [11, 12].

One might wonder if filter sizes 10, 20, or 30 yield any differences, because
the average commit sizes for the ten systems studied are smaller than these
filter sizes. The answer can be in Figure C.4, which shows that no filtering
(filter size inf) performs worse than filtering commits larger than 30, which in
turn performs worse than filtering commits larger than 20, and similarly for
filter size 10. Analysis using Tukey’s HSD also shows that the MAPs continue
to significantly decrease for filter sizes 10, 20, 30, and no filtering.

For the eight filter sizes studied, Figure C.5 shows the interaction between
filter size and program for two subsets of the data. On the left, the data for all

135

Paper C.

measures is shown, while on the right, the data for the top group of measures
identified in Table C.6 is shown. It is clear from this figure that smaller
commits contain much more useful information than larger commits as the
best value for most systems occurs at a filter size of only four or six when
considering all measures, and at a filter size of six to ten for the top group of
measures.

Considering only the top group of measures, Tukey’s HSD test, shown
in Table C.7, groups filter size six and eight in the top equivalence class. Thus,
in answer to RQ2, aggressive history filtering appears to retain only high
value commits that support the creation of high quality association rules.

This is a noteworthy finding, as it suggests that filtering should be ap-
plied much more aggressively. Although small commits capture stronger
couplings, prior work has not exploited this fact. For example, as discussed
in section 2, Roske [11] only generates association rules whose antecedent
is equal to the query. In particular, this means that the algorithm can not
generate rules from transactions smaller than the query. In contrast, the
more recent algorithm TARMAQ [14] can exploit partial matches between the
query and historical transactions, and can thus be used when considering
only small high-focus commits.

0.45
|

0.40
|

0.35
|

MAP

0.30
|

0.25
|

0.20
|

Expected Outcome Size

Fig. C.3: Interaction plot of measure and expected outcome size. The measures are shown unlabeled
to avoid clutter.

136

5. Results

MAP
0.20 0.25 0.30 0.35 0.40 0.45
| | | | | |

0.15
|

2 4 6 8 10 20 30 inf

Filter Size

Fig. C.4: Interaction plot of measure and filter size. The measures are unlabeled to avoid cluttering
the plot.

5.4 Impact of Query Size and Expected Outcome Size

Our third research question considers the impact of the query and the ex-
pected outcome:

RQ 3 To what extent do query size and expected outcome size affect the precision of
change recommendation?

Because all the explanatory variables and all their interactions are statistically
significant, the resulting coefficient equation is very complex (it includes al-
most 100 terms!). Rather than state this equation, we zoom in on a few of its
key terms. Specifically those involving query size, expected outcome size, and
commit size, which is the sum of query size and expected outcome size. These
three include three significant interactions and thus the interpretation of even
just this subset is complex.

Fortunately the practical range of these explanatory variables is limited
(as shown in Table C.4, where 90% of the data is covered by commit sizes less
than or equal to 5). The use of a small range of values makes it is viable to
enumerate all possible combinations. Table C.8 unravels the interactions for
the various combinations of query size and expected outcome size and uses color
to indicate entries with the same commit size. For example, the hardest case
(where the MAP value gets the lowest contribution) is for a query size of 1 and

137

Paper C.

©
S
Program
—— cisco
---- it
o el e httpd
o T lll— el e jetb
__________ .o --= km
------ linux
— llvm
---- rails
L o+ svn
<§(S --- wine
[}
-
[aV]
g
2 4 6 8 10 20 30 inf
Filter Size
© mememicmia
a4 e B LRI T R e
Program
—— cisco
---- it
w | httpd
[e e jetb
--— km
------ linux
— llvm
---- rails
L o+ svn
<§t S --- wine
[ep]
P
[aV]
P
2 4 6 8 10 20 30 inf
Filter Size

Fig. C.5: Interactions of filter size and program. To the left for all measures, and to the right for the
top group of measures.

138

5. Results

Table C.6: Top group of Tukey’s HSD for measure

interestingness measure MAP group
casual confidence 0.446 a
klosgen 0.446 a
descriptive confirmed confidence 0.446 a
added value 0.445 a
collective strength 0.445 a
loevinger 0.445 a
confidence 0.444 a
leverage 0.443 a
example and counterexample rate 0.443 a
difference of confidence 0.443 a
support 0.442 a

Table C.7: Tukey’s HSD for filter size (for the top measures).

filter size
size mean group
6 0.464 a
8 0.463 ab

10 0459 bc
4 0.457 C

an expected outcome size of 4. This high-challenge level is expected as this case
aims to predict the largest of the outcomes based on minimal information.

The table makes it possible to look at trends. Starting with commit size,
following the diagonal with green cells, which have a commit size of five, we
see that the prediction gets easier (the contribution to MAP increases) as the
expected outcome size decreases, and the query size increases. This same pattern
is seen with the other commit sizes (other colors). A similar pattern is also
clear for a fixed query size (any given column of the table). In this case, the
prediction gets more difficult (the contribution to MAP decreases) as expected
outcome size grows.

Finally, for a fixed expected outcome size (a given row in the table) the
trend is less clear: one might expect the prediction to get easier as query
size increases, because there is more information to build on. We can indeed
see this pattern in the row for expected outcome size of three. However, the row
where expected outcome size is two is approximately flat, and most surprisingly,
the top row where expected outcome size is one shows a clearly decreasing
trend. Thus, the data shows that the prediction of a single result gets more
difficult (the contribution to MAP decreases) as query size grows.

139

Paper C.

We can not completely explain this decrease, but conjecture that it is an
effect related to small commits (such as those shown in yellow and blue)
being more focussed than larger commits. In other words, larger commits are
more likely to introduce noise into the recommendation. It may also be an
artifact of using coarse-grained (file level) change data, and thus the expected
trend would be visible with more fine-grained (method level) change data.
We plan to investigate this phenomena in more detail in our future work.

5.5 Impact of Average Transaction Size

Finally, we consider our last research question:

RQ 4 To what extent does the average commit (transaction) size of the history affect
the precision of change recommendation?

To analyze this question we perform a linear regression using the average
commit size to predict the MAP value for each system. This data is shown
in Table C.9. The regression finds no significant correlation between the av-
erage commit size and MAP. Thus in answer to RQ4: the average commit size
in the change history has no impact on the precision of change recommen-
dation. In retrospect, considering how Table C.4 shows that the frequency of
commit sizes is rather skewed, the finding that the average commit size is not a
good predictor of the algorithm’s precision should come as no surprise.

5.6 Threats to Validity

Commits as a basis for evolutionary coupling: The evaluation presented
in this paper is grounded in predictions made from analyzing patterns in
change histories. However, as pointed out by Herzig et al. [29, 30], the trans-
actions in the change histories could contain unrelated files, or could miss
related files added in subsequent transactions. In our case, the software sys-
tems studied except KM use Git for version control, which provides devel-
opers with tools for amending commits and rewriting history. Therefore, we
argue that the impact of incomplete or entangled transactions is less signif-

Table C.8: Relative impact of query size and expected outcome size and their interactions. The
colors indicate the commit size, as shown in the legend on the right.

expected query size commit
outcome size 1 2 3 4 size
1 10 9 8 5 2
2 5 5 4 3
3 2 3 4
4 1 5

140

5. Results

icant in our case than it would be using other version control systems such
as SVN or CVS. In our related work, we also discuss methods for grouping
related commits that are orthogonal to our approach, and could be thus used
to refine the change history.

Variation in software systems: We conducted our experiments on two in-
dustrial systems and eight large open source systems. These systems vary
considerably in size and frequency of transactions (commits), which should
provide an accurate picture of the performance in various contexts (see Ta-
ble C.1). However, despite our careful choice, we are likely not to have cap-
tured all possible variations.

Random sampling errors: Our experiment is based on taking a large num-
ber of random samples from the change history of each system. Although we
use uniform random sampling, there is the possibility that our samples do
not accurately represent the actual change history, for example the distribu-
tion of transaction sizes considered in the sample may be different full history.
We address this particular issue applying a chi-squared test to validate that
our samples are representative of the population (the change histories). An
alternative approach would be to use a stratified sampling strategy where
one extracts samples of each transaction size in proportion to their frequency
in the complete history. The results of the chi-squared test indicate that such
an alternative strategy is not necessary.

Implementation: We have implemented the experiments using Ruby and
thoroughly tested all algorithms and measures studied in this paper. We also
performed the statistical analysis using standard methods provided by R.
However, we can not guarantee the absence of implementation errors, which
may affect our results.

Table C.9: Average commit size and MAP for each program.

average
program commit size MAP
cisco 6.20 0.375
git 1.96 0.328
httpd 4.80 0.311
jetbrains 3.39 0.263
km 5.08 0.408
linux 2.15 0.468
Ilvimm 4.42 0.360
rails 2.25 0.288
subversion 2.77 0.302
wine 2.47 0.482

141

Paper C.

6 Related Work

Recent research highlighted that the performance of data mining algorithms
is impacted by their configuration parameters [31]. A common strategy for
tuning these parameters consists in optimizing their values over half of the
test set (inner validation), and then using the other half to assess the perfor-
mance of the optimal parameters (outer validation) [32]. While this strategy
is useful to fine-tune the parameters for a particular type of data, it does not
provide insights on how the algorithm’s performance is affected by the pa-
rameters [33]. In the context of association rule mining, several authors have
noted the need to investigate the impact of parameter settings on the quality
of the generated rules [34-36].

Therefore, in this paper, we investigate the extent to which the quality
of change recommendation via association rule mining is affected by three
factors (1) the values selected for various parameters of the mining algorithm,
(2) characteristics of the change set used to derive the recommendation, and
(3) characteristics of the system’s change history for which recommendations
are generated. In the rest of this section, we distinguish related work on these
three aspects, focusing on the area of software maintenance and evolution.
Parameters in Association Rule Mining: In general, association rule min-
ing algorithms differ from each other in the data structures used to represent
transactions, and the strategy used to select transactions relevant to a given
query [37]. However, the majority of such algorithms are characterized by
similar parameters. Among those, this paper focuses on the maximum size
of transactions used to generate rules (transaction filtering size), and on the
metric measuring the strength of evolutionary couplings inferred by those
rules (interestingness measure). In the context of software change impact anal-
ysis, several studies remark on the importance of discarding from the history
large change sets that are likely to contain unrelated files. For example, Kagdi
et al [24], Zimmermann et al. [11] and Ying et al. [12] propose filtering trans-
actions larger than 10, 30, and 100 items, respectively. However, these authors
generally do not report how such threshold values have been chosen, nor do
they explore the impact of alternative values on recommendation precision.
Several authors have also remarked that selecting the right interestingness
measure for a problem domain can significantly affect recommendation ac-
curacy [20, 22, 23, 25]. In particular, Le and Lo compared 38 measures in
the context of rule-based specification mining, highlighting the need to look
beyond standard support and confidence to find interesting rules [25]. We
are not aware of similar studies carried out in the context of software change
impact analysis.

Characteristics of the Change Set: Targeted association rule mining uses the
query to drive the generation of rules [16]. In general, particular character-

142

7. Concluding Remarks

istics of the query can effect the quality of recommendations. For example,
in the context of software change impact analysis, we identified in previ-
ous work a particular class of queries for which the most common targeted
association rule mining approaches cannot generate recommendations [14].
Note that it is common practice to validate targeted association rule mining
approaches by sampling random queries from the change history [11, 12].
While this strategy ensures that the approach is evaluated on a variety of
change sets from the history, authors in general do not consider how query
size might affect the quality of the recommendations. Among others, Hassan
and Holt investigated the effectiveness of evolutionary coupling in predicting
change propagation effects resulting from source code changes, but did not
evaluate whether the size of transactions in the history affected the quality of
the predictions generated [19].

Characteristics of the Change History: Several past studies have proposed
strategies to group transactions in the change history [11, 13, 38]. The reason
for doing so is that a developer might (accidentally) commit an incomplete
transaction, and update the remaining files related to the same change in a
separate transaction. As a consequence, entities that are logically coupled
via the same change might become spread across several transactions in the
change history. Nevertheless, in modern version control systems transactions
are stashed in the user’s local repository and can be amended before they are
tinalized at a later stage, thereby reducing the risk of committing incomplete
transactions. In contrast, the question whether properties of the change his-
tory, such as average commit size and frequency, affect the quality of change
recommendation is less studied. In this direction, German carried out an
empirical study on several open source projects, finding that the revision his-
tories of most systems contains mostly small commits [39]. Alali et al. also
investigated the total number of lines modified in the files and the total num-
ber of hunks (continuous groups of lines) that were changed [40]. Kolassa
et al. performed a similar study on commit frequency, reporting an average
inter-commit time of about three days [41]. However, none of these studies
investigate how characteristics of the change history affect the quality of the
change recommendation.

7 Concluding Remarks

Conclusions: Association rule mining is an automated, unsupervised, learn-
ing technique that has been successfully used to analyze a system’s change
history and uncover evolutionary coupling between its artifacts. These evo-
lutionary couplings can be used to recommend artifacts that are potentially
impacted by a given set of changes to the system. Doing so can help developers
address the increasing entropy caused by repeated software maintenance and

143

Paper C.

evolution.

In this paper, we present a series of experiments using the change histories
of two large industrial systems and eight large open source systems. For each
system, we randomly extract a representative sample of the transactions from
the change history, randomly split each of these transactions in two parts, a
query and an expected outcome, and analyzed how several parameters affect
the prediction of the expected outcome based on the query.

We draw the following conclusions: first, our analysis shows that the im-
pact of interestingness measure is largely independent of the particular program,
query size, and expected outcome size. This means that it is possible to identify
the best measures for change recommendations based on evolutionary cou-
pling. To do so, we clustered measures using Tukey’s HSD where the mea-
sures in each cluster are not statistically different from each other. We find
that the standard measures confidence and support are in the top equivalence
class; thus statistically no other measure provides better performance than
these two. This result is in line with the earlier findings by Lo and Le [25],
who conducted a related study of interestingness measures for rule-based
specification mining.

Second, learning from a change history that is filtered to remove transac-
tions larger than six to eight files yields the best results, regardless of program,
query size, and expected outcome size. Furthermore, the average precision pro-
duced by higher thresholds is significant worse.

Third, for smaller commits (up to a transaction size of five, which includes
just over 90% of all transactions), the smaller the expected outcome, the higher
the average precision. This suggests that for relatively small commits the
less information you want to predict, the better the results. When we extend
the analysis to larger commits (which are the minority), larger expected out-
comes lead to higher precision. Combined these two observations suggest
that predicting a few missed files is easy, while predicting a large number of
missed files from limited information is hard. A similar pattern is seen when
comparing smaller and larger commit sizes.

Fourth, for the smaller commits one would expect that larger queries
would produce better average precision. Our data only partially supports
this expectation. Looking at the rows of Table C.8 two effects are competing
with each other. A simplified version of the coefficient equation used to fill
in this table includes both +query size and —query size?. The data in the table
reflects these two factors. Initially the linear term dominates and increased
query size increases the average precision. However, for larger values of query
size the negative quadratic term dominates and the average precision is re-
duced. While there is insufficient data to establish a trend, the peak value
appears to be a function of the expected outcome size. In the first row the value
is less than or equal to one, for the second row it is two while for the third
and fourth rows it is greater than two. Clearly, this effect warrants future

144

7. Concluding Remarks

research consideration.

Guidelines: From our conclusions, we derive the following practical guide-
lines for applying association rule mining in the context of software change
recommendation: (1) stick with default interestingness measures, as they are
in the top perform class and have a long proven track record, (2) learn from a
subset of the change history that includes only the smaller transaction sizes
to avoid noise. We have good experience with transaction sizes up to about
eight, but these values may depend on the actual transaction sizes in the
particular history being analyzed.

Future Work: We consider the following directions for future extension
of this work: (1) Use of fine-grained co-change information. Although our al-
gorithms are granularity agnostic, we expect interesting differences in the
change patterns used to mine evolutionary coupling at different levels of gran-
ularity. For instance, consider how multiple method-level changes in the
same file get abstracted into one change at the file-level. These differences
will likely have an effect on parameter values, such as the transaction filter
size. (2) Language-specific change recommendations. The change recommenda-
tion mining in this paper is independent of the programming language of the
artifacts in the change history. This has advantages in the context of heteroge-
neous systems, but it also potentially increases noise. Consider a software de-
velopment project that consists of a front-end written in Java and a back-end
written in C. In this case, front-end Java developers are not likely to benefit
from recommendations involving the C code. In contrast, full-stack integrators,
responsible for connecting the front and back end, would benefit from multi-
language recommendations. In this context, there is value in being able to
provide language-specific change recommendations, i.e., recommendations that
are based on filtering the change history for artifacts of a particular type.
(3) Impact of software development styles. The third area of related work will
involve a deeper analysis of the impact of various types of software systems
and their software development styles on the quality of change recommen-
dations. Aspects that may play a role here include frequency of commits,
tendency to piggyback/tangle commits, and code ownership. The question
is how to classify systems based on these factors. An initial study might com-
pare industrial software systems with open source systems, as there are often
clear differences between the two styles. With that comparison in mind, it is
of interest to observe that the two industrial systems that were considered in
this study could not be distinguished from the open source systems based on
the interaction plots (figures C.1-C.5), nor could be distinguished in terms
of MAP or using Tukey’s HSD analysis. However, this observation is based
on a very small sample size. A more complete comparison should consider
a larger sample of industrial systems, unfortunately acquiring such may not
be an easy task. We welcome suggestions for tackling this challenge.

145

References

Acknowledgement: This work is supported by the Research Council of
Norway through the EvolvelT project (#221751/F20) and the Certus SFI
(#203461/030). Dr. Binkley is supported by NSF grant 11A-1360707 and a
J. William Fulbright award.

References

[1]

G. Canfora and L. Cerulo, “Impact Analysis by Mining Software
and Change Request Repositories,” in International Software Metrics
Symposium (METRICS). 1EEE, 2005, pp. 29-37. [Online]. Available:
http:/ /ieeexplore.ieee.org/articleDetails.jsp?arnumber=1509307http:

/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1509307

M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more
efficient static software change impact analysis method,” in ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE). ACM, 2008, pp. 84-90. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1512475.1512493

X. Ren, F Shah, F Tip, B. G. Ryder, and O. Chesley, “Chianti:
a tool for change impact analysis of java programs,” in ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2004, pp. 432-448. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1035292.1029012

M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact
analysis of change requests on source code based on inter-
action and commit histories,” in International Working Confer-
ence on Mining Software Repositories (MSR), 2014, pp. 162-171.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2597096http:
//dx.doi.org/10.1145/2597073.2597096

S. Bohner and R. Arnold, Software Change Impact Analysis. CA, USA:
IEEE, 1996.

A. R. Yazdanshenas and L. Moonen, “Crossing the bound-
aries while analyzing heterogeneous component-based software
systems,” in IEEE International Conference on Software Main-
tenance (ICSM). 1EEE, 2011, pp. 193-202. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSM.2011.6080786http:/ /ieeexplore.
ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=6080786

A. Podgurski and L. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 965-979,

146

[10]

[11]

[12]

[13]

[14]

[15]

References

1990. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=58784

S. Eick, T. L. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,”
IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12,
2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=895984

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on
Fine-Grained Change Information,” in Working Conference on Reverse
Engineering (WCRE). IEEE, 2008, pp. 42—46. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656392

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=170035.170072

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463228

A. T. T. Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=1324645

H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-files
from version histories,” in International Workshop on Mining Software
Repositories (MSR). ACM, 2006, pp. 47-53. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1137983.1137996

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the Analysis of Evolutionary Coupling for Software
Change Impact Analysis,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, mar 2016,
pp- 201-212. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7476643

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 1998, pp. 190-198. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=738508

147

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

References

R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

T. Ball, J. Kim, and H. P. Siy, “If your version control system
could talk,” in ICSE Workshop on Process Modelling and Empirical
Studies of Software Engineering, 1997. [Online]. Available: http:
/ /csalpha.ist.unomaha.edu/{~}hsiy/research/visual.pdf

D. Beyer and A. Noack, “Clustering Software Artifacts Based on
Frequent Common Changes,” in International Workshop on Program Com-
prehension (IWPC). 1EEE, 2005, pp. 259-268. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421041

A. E. Hassan and R. Holt, “Predicting change propagation in
software systems,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 2004, pp. 284-293. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=1357812

L. Geng and H.]J. Hamilton, “Interestingness measures for data
mining,” ACM Computing Surveys, vol. 38, no. 3, sep 2006. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1132960.1132963

M. Kamber and R. Shinghal, “Evaluating the Interestingness of Charac-
teristic Rules,” in SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 1996, pp. 263-266.

P-N. Tan, V. Kumar, and J. Srivastava, “Selecting the right
objective measure for association analysis,” Information Systems,
vol. 29, no. 4, pp. 293-313, jun 2004. [Online]. Available: http:
/ /linkinghub.elsevier.com/retrieve /pii/S0306437903000723

K. McGarry, “A survey of interestingness measures for knowledge dis-
covery,” The Knowledge Engineering Review, vol. 20, no. 01, p. 39, 2005.

H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 933-969, oct 2013. [Online].
Available: http:/ /link.springer.com/10.1007 /s10664-012-9233-9

T.-d. B. Le and D. Lo, “Beyond support and confidence: Exploring
interestingness measures for rule-based specification mining,” in
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 331-340. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7081843

148

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

References

T. Rolfsnes, L. Moonen, S. Di Alesio, R. Behjati, and D. W. Binkley,
“Improving change recommendation using aggregated association
rules,” in International Conference on Mining Software Repositories (MSR).
ACM, 2016, pp. 73-84. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2901739.2901756

A. Alali, “An Empirical Characterization of Commits in Software Repos-
itories,” Ms.c, Kent State University, 2008.

H. J. Hilderman, Robert and Hamilton, Knowledge discovery and measures
of interest. Springer Science & Business Media, 2013.

K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Working Conference on Mining Software Repositories (MSR). 1EEE,
may 2013, pp. 121-130. [Online]. Available: http://ieeexplore.ieee.org/
Ipdocs/epic03/wrapper.htm?arnumber=6624018

K. Herzig, S. Just, and A. Zeller, “The impact of tangled
code changes on defect prediction models,” Empirical Software
Engineering, vol. 21, no. 2, pp. 303-336, apr 2016. [Online]. Available:
http:/ /link.springer.com /10.1007 /s10664-015-9376-6

O. Maimon and L. Rokach, Data Mining and Knowledge Discovery
Handbook, O. Maimon and L. Rokach, Eds. Springer, 2010.
[Online]. Awvailable: http:/ /books.google.com /books?hl=en{&}lr=
{&}id=S-XVEQWABeUC{&}oi=fnd{&}pg=PR21{&}dq=Data+Mining+
and+knowledge+discovery+handbook{&}ots=LBVkfoBx65{&}sig=
u6cln2kopRhLrbpgbMOFhvYhFqk{%}5Cnhttp:/ /www.springerlink.
com/index/10.1007 /978-0-387-09823-4http:/ /link.springer.com /1

I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-
free data mining,” Sigkdd, pp. 206-215, 2004. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1014052.1014077

Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of
association rule algorithms,” in SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 2001, pp. 401-406.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=502512.
502572

W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient Adaptive-Support
Association Rule Mining for Recommender Systems,” Data Mining and
Knowledge Discovery, vol. 6, no. 1, pp. 83-105, 2002. [Online]. Available:
http:/ /link.springer.com /10.1023/ A:1013284820704

149

References

[36] N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” ACM SIGMOD Record, vol. 35, no. 1, pp. 14-19, mar 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1121995.
1121998

[37] A. Silva and C. Antunes, “Constrained pattern mining in the
new era,” Knowledge and Information Systems, vol. 47, no. 3, pp.
489-516, 2016. [Online]. Available: http://link.springer.com/10.1007/
s10115-015-0860-5

[38] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Detecting
asynchrony and dephase change patterns by mining software
repositories,” Journal of Software: Evolution and Process, vol. 26, no. 1, pp.
77-106, jan 2014. [Online]. Available: http://onlinelibrary.wiley.com/
doi/10.1002/smr.504 / fullhttp: / /doi.wiley.com/10.1002 /smr.1635

[39] D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Software Engineering, vol. 11, no. 3, pp. 369-393, 2006.

[40] A. Alali, H. Kagdi, and]J. I. Maletic, “What’s a Typical Commit? A
Characterization of Open Source Software Repositories,” in International
Conference on Program Comprehension (ICPC). IEEE, 2008, pp. 182-191.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4556130

[41] C.Kolassa, D. Riehle, and M. A. Salim, “The empirical commit frequency
distribution of open source projects,” in International Symposium on
Open Collaboration (WikiSym). ACM, 2013, pp. 1-8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491055.2491073

150

Paper D

What are the Effects of History Length and Age
on Mining Software Change Impact?

Leon Moonen, Thomas Rolfsnes, Stefano Di Alesio
and Dave W. Binkley

Accepted for publication in the main research track of the 16th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM), October 2-3, 2016. Further invited and submitted to
the SCAM special issue published by the Springer journal Empirical
Software Engineering (EMSE).

(© 2016 IEEE
The layout has been revised.

1. Introduction

Abstract

The goal of Software Change Impact Analysis is to identify artifacts (typically source-
code files or individual methods therein) potentially affected by a change. Recently,
there has been increased interest in mining software change impact based on evolu-
tionary coupling. A particularly promising approach uses association rule mining
to uncover potentially affected artifacts from patterns in the system'’s change history.
Two main considerations when using this approach are the history length, the num-
ber of transactions from the change history used to identify the impact of a change,
and history age, the number of transactions that have occurred since patterns were
last mined from the history. Although history length and age can significantly affect
the quality of mining results, few guidelines exist on how to best select appropriate
values for these two parameters.

In this paper, we empirically investigate the effects of history length and age on the
quality of change impact analysis using mined evolutionary coupling. Specifically,
we report on a series of systematic experiments using three state-of-the-art mining
algorithms that involve the change histories of two large industrial systems and 17
large open source systems. In these experiments, we vary the length and age of the
history used to mine software change impact, and assess how this affects precision
and applicability. Results from the study are used to derive practical guidelines for
choosing history length and age when applying association rule mining to conduct
software change impact analysis.

1 Introduction

When software systems evolve, the interactions in the source code grow in
number and complexity. As a result, it becomes increasingly challenging for
developers to predict the overall effect of making a change to the system.
Change Impact Analysis [1] has been proposed as a solution to this problem,
aimed at identifying software artifacts (e.g., files, methods, classes) affected
by a given change. Traditionally, techniques for change impact analysis are
based on static or dynamic analysis, which identify dependencies, for exam-
ple, methods calling or called by a changed method [2—4]. However, static
and dynamic analysis are generally language-specific, making them hard to
apply to modern heterogeneous software systems [5]. In addition, dynamic
analysis can involve considerable overhead (e.g., from code instrumentation),
while static analysis tends to over-approximate the impact of a change [6].
To address these challenges, alternative techniques have been proposed
that identify dependencies through evolutionary coupling [7-10]. In essence,
evolutionary coupling exploits a developer’s inherent knowledge of the de-
pendencies in the system, which manifest themselves through commit com-
ments, bug reports, context switches in IDEs, and so on [8]. These couplings

153

Paper D.

differ from those found through static and dynamic analysis, because they
are based on how the software system has evolved over time, rather than
how system components are interconnected.

This paper considers historical co-change between artifacts as the basis for
uncovering evolutionary coupling. Known techniques [10-13] for mining
evolutionary couplings from artifact co-changes build on association rule min-
ing (or association rule learning) [14], and differ in the way that the association
rules are generated from the history. Nevertheless, key to all such techniques
is the history learned from. There are two main factors related to the history
that impact the mined rules: (1) the history length, the number of transactions
in the history considered while mining co-change patterns, and (2) the history
age, the number of transactions that have occurred since these patterns were
mined. The resulting rules directly affect the quality of any change impact
analysis based on mined evolutionary coupling. However, while reviewing
the literature, we found that the effects of history length and age on mined
association rules have not been systematically studied. We address this short-
coming.

Contributions: This paper builds upon our previous work that explored the
extent to which history length and age affect the quality of software change
impact analysis via association rule mining [15]. We present a series of sys-
tematic experiments using the change histories of two large industrial sys-
tems and 17 large open source systems. In particular, this paper extends
our previous work in the following key respects: (1) We extend our analy-
sis to include two more state-of-the-art software change mining techniques
Co-CHANGE and Rosk in addition to the TARMAQ technique covered in our
previous work. (2) We refine the co-change histories used in the analysis
from a coarse-grained file-level to a more practical fine-grained level consisting
of method-level co-change information for all parseable source-code, and file-
level co-change information for un-parseable files. (3) We include an addi-
tional longitudinal study that considers change histories covering the complete
evolution history of seven open source systems, which were selected based on
the fact that their history is significantly longer (up to 540000 transactions)
than the 50000 transactions considered earlier. (4) We include a new research
question that investigates the stability of recommendation quality through-
out the evolution history given a particular history length and history age.
(5) We strengthen the power of the statistical analysis used to address all
our research questions. (6) Finally, we extend our discussion of background
material and related work. We use the results from these investigations to
derive practical guidelines for selecting an appropriate system-specific value
for history length and for determining at what age a model has sufficiently
deteriorated to benefit from rebuilding. The guidelines enable a team of en-
gineers to best exploit association rule mining for change impact analysis.

Overview: section 2 provides background on mining evolutionary coupling.

154

2. Mining Software Change Impact

section 3 presents our research questions. section 4 describes the setup of our
empirical investigation, whose results are presented in section 5. Finally,
section 6 discusses the threads to validity, section 7 presents related work,
and section 8 provides some concluding remarks.

2 Mining Software Change Impact

We use historical co-change between artifacts to uncover evolutionary cou-
pling. Such co-change data can, for example, be found as revisions in a
project’s version control system [16], as fixes to a bug in an issue tracking
system [17], or by instrumenting the development environment [18]. Most
techniques that uncover evolutionary coupling from co-change data build on
association rule mining, an unsupervised learning technique that discovers re-
lations between artifacts (referred to as items in the more general context) of
a dataset [14].

Association rules are implications of the form A — B, where A is referred
to as the antecedent, B as the consequent, and A and B are disjoint sets. For
example, consider the classic application of analyzing shopping cart data: if
multiple transactions include bread and butter then a potential association
rule is bread — butter, which can be read as “if you buy bread, then you are likely
to buy butter.”

While mining evolutionary coupling from historical co-change data, the
artifacts we consider are the files and methods of a system! and the sequence
(history) 7 of transactions, to be a list of past commits from a versioning
system. More specifically, a transaction T € 7 is the set of artifacts that were
either changed or added while addressing a given bug fix or feature addition,
hence creating a logical dependence between them [19].

As originally defined [14], association rule mining generates rules that ex-
press patterns in a complete data set. However, some applications can exploit
a more focused set of rules. Targeted association rule mining [20] focuses the
generation of rules by applying a constraint. An example constraint speci-
fies that the antecedent of all mined rules belongs to a particular set of files,
which effectively reduces the number of rules that need to be created. This
reduction drastically improves the execution time of rule generation [20].

When performing change impact analysis, rule generation is constrained
based on a change set, also known as a query. For example, the set of modi-
fied artifacts since the last commit. In this case, only rules with at least one

! Note that various granularity choices are possible since the algorithms are granularity ag-
nostic; if fine-grained co-change data is available (or computable), the same algorithms will
relate methods or variables just as well as more coarse-grained files. In this paper we consider
a practical fine-grained level that uses method-level information where possible (i.e., for source
files that can be parsed, as discussed later in the paper), and file-level information otherwise
(e.g., documents, build files, and configuration files).

155

Paper D.

changed artifact in the antecedent are created. The resulting impacted arti-
facts are those found in the rule consequents. Thus, the output of change im-
pact analysis (the impact set) is the set of artifacts that are historically changed
alongside the elements of the change set.

Only a few targeted association rule mining algorithms have been consid-
ered in the context of change impact analysis: the Rose algorithm by Zim-
merman et al. [11], the FP-TREE algorithm by Ying et al. [12], the Co-CHANGE
algorithm by Kagdi et al. [13], and the TARMAQ algorithm introduced in our
earlier work [10]. The algorithms differ in terms of constraints on how the
query is matched against the transactions of the history. For example, given
a change set {a,b, c}, Rost and FP-TREE only uncover those artifacts that ever
change in the history together with all artifacts in the query {a,b,c}. This
strict matching constraint is aimed at obtaining a more precise impact set,
but an analysis of the algorithm’s applicability showed that the constraint also
prevents the algorithms from produce an answer more often than not [10].
In contrast, Co-CHANGE uncovers artifacts that ever change in the history
together with any of a, or b, or c. This more lenient constraint is aimed at giv-
ing more answers, which are, however, potentially noisy; since the answers
are only based on one matching element, they can have little relation to the
full query. Finally, TARMAQ reports the artifacts that have co-changed with
largest possible subset of the query, a constraint aimed at dynamically bal-
ancing the precision of a complete match with improved applicability [10].
In cases where a match of the complete query is possible, Rosg, FP-TREE, and
TarMmAQ will give the exact same result. In cases where only a subset of the
query can be matched, Rose and FP-TRek fail to produce an impact set, while
TArRMAQ provides the impact set that results from the largest possible match
between the query and the change history.

3 Research Questions

It is regularly surmised in mining literature [11, 21, 22] that learning from too
short or too long a history (in our case to few or two many commits) results
in a suboptimal outcome, respectively because not enough knowledge about
the system can be uncovered, or because outdated information introduces
noise. We aim to better understand the influence of history length via the
following research question:

RQ 1. What influence does history length have on impact analysis quality?
We refine RQ 1 using the following subquestions:
RQ 1.1. Can we identify a lower bound on the history length that is needed to

learn enough about the system to produce acceptable impact analysis results?

156

3. Research Questions

RQ 1.2. Do we see a diminishing return in impact analysis quality as history
length increases?

RQ 1.3. Can we identify an upper bound on history length where outdated knowl-
edge starts to negatively affect our analysis causing quality to decrease below accept-
able levels?

A closely related aspect is history age, which we define as the number of
transactions that have occurred since the most recent transaction of the his-
tory used to conduct the analysis. History age basically tells us how long
a model can successfully be used to make predictions regarding a system.
Knowledge about the quality of impact analysis based on older histories
gives valuable input regarding the feasibility of an incremental approach that
reuses older association rules.

RQ 2. What influence does history age have on impact analysis quality?

We refine RQ 2 using the following subquestions:

RQ 2.1. Can we identify an upper bound on the history age beyond which the
generated model has grown too old and can no longer produce acceptable impact
analysis results?

RQ 2.2. Is there a point at which impact analysis quality ceases to deteriorate as
history age increases?

Next, we investigate the possibility of providing project-specific advise for
values of history length and history age:

RQ 3. Can we predict good values for history length and age for a given software-
system based on characteristics of its change-history (such as the average transaction
size and the number of developers)?

Finally, we investigate the sensitive of the algorithms using a common his-
tory length and history age but at different points in the system’s evolution
history:

RQ 4. How does choosing a particular history length and history age affect impact
analysis quality throughout the evolution history?

Scope of investigation: To ensure a complete understanding, we will ini-
tially investigate the effects of history length and age at a coarse level, and
progressively zoom in at finer levels of granularity for areas of interest indi-
cated by the coarse study.

157

Paper D.

Moreover, based on our initial results [15] with respect to RQ 1.3, this
paper includes an additional longitudinal study that considers the complete
evolution history of seven open source systems. These systems were selected
because their available change history is significantly longer than the histo-
ries available for other systems. This combination allows us to cover both
the width of a substantial set of systems, and the depth of a long evolution
history.

4 Empirical Study

We perform a comprehensive empirical study to assess the effects of history
length and age on the quality of change impact analysis through mined evo-
lutionary coupling. To consider the influence that the mining algorithm has
on the study, we experiment with three of the four algorithms introduced
in section 2 (we omit FP-TREE because it produces the same impact sets as
RosE). The goal of our study is to answer the research questions introduced
in section 3 by controlling the history length and age while mining change
impact on several large software systems.

The remainder of this section details the design of our empirical study
and is organized as follows: subsection 4.1 introduces the software systems
included in the study. subsection 4.2 describes the strategy we use to system-
atically vary history length and age. In Sections 4.3, 4.4 and 4.5 we describe
how we use targeted association rule mining to generate change impact sets
for a change set (i.e., a query) of artifacts. Finally, in subsection 4.6 we intro-
duce the two measures used to evaluate the quality of the generated change
impact sets.

4.1 Subject Systems

To assess targeted association rule mining in a variety of conditions, we
selected 19 large systems having varying characteristics, such as size and
frequency of transactions, number of artifacts, and number of developers.
Two of these systems come from our industry partners, Cisco Norway and
Kongsberg Maritime (KM). Cisco Norway is the Norwegian division of Cisco
Systems, a worldwide leader in the production of networking equipment.
We consider their software product line for professional video conferencing
systems, developed by Cisco Norway. KM is a leader in the production of
systems for positioning, surveying, navigation, and automation of merchant
vessels and offshore installations. We consider a common software platform
KM uses across various systems in the maritime and energy domain.

The other 17 systems, all well known open-source projects, are reported
in Table D.1 along demographics illustrating their diversity. The table shows

158

4. Empirical Study

Table D.1: Characteristics of the evaluated software systems (based on our extraction of the last
50000 transactions for each).

Software System History Unique Languages used*
(inyrs) #files

CPython 12.05 7725 Python (53%), C (36%), 16 other (11%)

Mozilla Gecko 1.08 86650 C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git 11.02 3753 C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop 6.91 24607 Java (65%), XML (31%), 10 other (4%)

HTTPD 19.78 10019 XML (56%), C (32%), Forth (8%), 19 other (4%)
Intelli] IDEA 2,61 62692 Java (71%), Python (17%), XML (5%), 26 other (7%)
Liferay Portal 0.87 144792 Java (71%), XML (23%), 12 other (4%)

Linux Kernel 0.77 26412 C (94%), 16 other (6%)

LLVM 454 25600 C++ (71%), Assembly (15%), C (10%), 16 other (6%)
MediaWiki 11.69 12252 PHP (78%), JavaScript (17%), 11 other (5%)

MySQL 10.68 42589 C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP 10.82 21295 C (59%), PHP (13%), XML (8%), 24 other (20%)

Ruby on Rails 1142 10631 Ruby (98%), 6 other (2%)

RavenDB 8.59 29245 C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion 14.03 6559 C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit 3.33 281898 HTML (29%), JavaScript (30%), C-++ (26%), 23 other (15%)
Wine 6.6 8234 C (97%), 16 other (3%)

Cisco Norway 243 64974 C++, C, C#, Python, Java, XML, other build/config

Kongsberg Maritime 15.97 35111 C++, C, XML, other build/config

Software System Unique Avg. # artifacts Nr. of =~ Mode Median Avg. Median
artifacts per commit Devs Inter- Inter- Commit Commit

Commit Commit Streak Streak

CPython 30090 452 159 0 0 5.97 4
Morzilla Gecko 231850 12.28 1047 0 11 2.66 1
Git 17716 3.13 1404 0 0 2.22 1
Apache Hadoop 272902 4779 126 0 5 2.63 2
HTTPD 29216 6.99 119 0 1 7.85 5
Intelli] IDEA 343613 126 194 0 4 2.58 1
Liferay Portal 767955 299 212 0 2 6.26 2
Linux Kernel 161022 55 3256 0 0 3.10 1
LLVM 66604 591 530 0 6 3.18 2
MediaWiki 12267 331 541 0 1 1.65 1
MySQL 136925 10.66 274 0 0 36.90 2
PHP 53510 6.74 471 0 0 3.33 2
Ruby on Rails 10631 2.56 3497 0 1 0.99 0
RavenDB 139415 18.18 259 0 0 2.84 1
Subversion 46136 6.36 91 0 1 5.95 4
WebKit 397850 18.12 393 0 12 2.68 2
Wine 126177 6.68 517 0 0 3.15 1
Cisco Norway 251321 13.62 - - - - -
Kongsberg Maritime 35111 5.08 - - - - -

* languages used by open source systems are from http://www.openhub.net,
percentages and demographics for the industrial systems are not disclosed.

159

Paper D.

that the systems vary from medium to large size, with close to 300000 differ-
ent files for one system, nearly 768 000 artifacts in another, and almost 3 500
developers contributing to a third. For each system, we extracted the 50 000
most recent transactions (commits). This number of transactions covers vastly
different time spans across the systems, ranging from almost 20 years in the
case of HTTPD, to a little over 10 months in the case of the Linux kernel. We
also report six “demographic” characteristics that we expect to be useful for
answering RQ3:

1. Number of (unique) artifacts appearing in the history of a system;

2. Average Commit Size: the average number of artifacts appearing in a
transaction in the history of a system;

3. Number of Developers who committed at least one transaction in the his-
tory of a system;

4. Mode and Median Inter-Commit Time: the inter-commit time is the time
between two commits by the same developer, measured as a number of
commits;

5. Average and Median Commit Streaks: a commit streak is the number of
consecutive commits by the same developer in the history of a system.

Finally, the rightmost column of the upper table shows the programming
languages used in each system, as an indication of heterogeneity.

4.2 History Length and Age

Given that the time span covered by 50000 commits varies considerably
across the systems in our study, we choose to express history length and
age as a number of transactions, rather than using calendar time. This sets
the same baseline for each system, enabling a meaningful comparison of the
effects of history length and age across systems.

We refer to a fixed combination of history length and age as a scenario.
In our coarse-grained study, we examine 24 scenarios pairing history lengths
of 5000, 15000, 25000, and 35000 commits with ages of zero (no age), 1000,
2000, 3000, 4000 and 5000 commits.

Preliminary results of the coarse-grained study highlighted large vari-
ations in change impact analysis quality for small length and age values,
showing that the quality rapidly decreases with history aging, while increas-
ing with longer histories. To zoom in on these areas, we conduct two addi-
tional fine-grained studies in which we respectively investigate small history
lengths (for a fixed age of zero), and small ages (for a fixed history length of
35000 commits). In each of the studies, we examine three intervals of pro-
gressively finer granularity for the variable of interest: (a) from 0 to 2000
commits by every 100 commits; (b) from 0 to 200 commits by every 10 com-
mits; (c) from 0 to 20 commits by every single commit. Note that we skip
history lengths of zero commits because, trivially, no association rules can be

160

4. Empirical Study

Table D.2: Characteristics of the seven software systems selected for the longitudinal study
(ordered by increasing number of available transactions for each).

Software System Available History Unique # Avg. # artifacts

commits (in yrs) of artifacts per commit
Wine 110950 22.81 227223 8.02
LLVM 118967 14.88 106185 5.07
Intelli] IDEA 159020 11.47 1083032 17.23
Liferay Portal 171507 10.01 1581784 26.95
WebKit 171604 14.64 808437 17.34
Mozilla Gecko 430127 18.07 1016343 10.87
Linux Kernel 542098 10.99 953194 6.5

mined from an empty history Thus, we consider 60 scenarios for small history
lengths and age zero, and 63 scenarios for small ages and a history of 35000
commits. We refer to the fine-grained collections of scenarios characterized
by each of these ranges as lengthX and ageX, where length and age specify
the context where the range is used, and X specifies the upper bound of the
range. For example, age20 represents the fine-grained collection containing
the scenarios with history length 35000 and age in [0,1,2,...20]. To investi-
gate fine-grained variations on a larger scale, we also consider the collection
length35k, which varies history length from 0 to 20 in steps of 1 commit, from
20 to 200 commits in steps of 10 commits, and then from 200 to 35000 com-
mits in steps of 100 commits.

We do not consider a similar large interval for history age, as the pre-
liminary coarse-grained study did not show significant variations in change
impact analysis quality for age values larger than about 2000 commits.

Finally, based on our initial findings [15], this paper adds a longitudinal
study to get a more conclusive answer to RQ 1.3. In this study we analyze
the complete evolution history of seven of our subject systems to better under-
stand if there is an upper-bound on history length where outdated knowl-
edge starts to negatively affect recommendation quality. Table D.2 gives an
overview of the characteristics of the seven systems that were used in this
investigation, which were selected because of their significantly longer evo-
lution histories compared to other available other systems. The scenarios con-
sidered in the longitudinal study fix age at zero and consider history lengths
from 10000 up to the maximum available history for each system (column
two of Table D.2) in steps of 10000 commits.

161

Paper D.

4.3 History Filtering

It is a common practice in association rule mining to filter the history to re-
move transactions larger than a certain size [11, 12, 23, 24]. Filtering reduces
noise by removing large transactions that are likely not relevant for evolu-
tionary coupling, such as mass license updates or version bumps.

In previous work, we considered the effect of transaction filtering size

on the quality of change impact analysis using association rule mining [25].
That study was conducted in a similar setting as this paper, and found that
filtering transactions larger than eight items gave the best results. Therefore,
for each scenario, we mine association rules from a filtered history containing
transactions with at most eight items.
One challenge faced by association rule mining is that large transactions lead
to a combinatorial explosion in number of association rules [14]. Fortunately,
as seen in Figure D.1, which provides violin plots of transaction size for
the individual systems, transaction sizes are heavily skewed towards smaller
transactions.

Unfortunately, as also seen in the violin plots, there exist outlier transac-
tions containing 10 000 or more artifacts. To combat the combinatorial explo-
sion challenge raised by such large commits, it is common to filter the history
by removing transactions larger than a certain size [11, 12, 23, 24]. Filtering
reduces noise by removing large transactions that are likely not relevant for
evolutionary coupling, such as mass license updates or version bumps.

In an attempt to reflect most change impact analysis scenarios, we employ
a quite liberal filtering and remove only those transactions larger than 300
artifacts. The rational behind choosing this cutoff is that for each program at
least 99% of all transactions are smaller then 300 artifacts. In most cases, the
percentage is well above 99% of the available data.

4.4 Query Generation and Execution

Conceptually, a query Q represents a set of artifacts that a developer changed
since the last synchronization with the version control system. Recall that
the main assumption behind evolutionary coupling is that artifacts that fre-
quently change together are likely to depend on each other. The key idea
behind our evaluation is to sample a transaction T from the history, and
randomly partition it into a non-empty query Q and a non-empty expected
outcome E = T\ Q. This allows us to evaluate to what extent our change
impact analysis technique is able to estimate E from Q for a given scenario.

From each filtered history we take a sample of 1100 recent transactions,?

ZFor a normally distributed population of 50000, a minimum of 657 samples is required to
attain 99% confidence with a 5% confidence interval that the sampled transactions are represen-
tative of the population. Since we do not know the distribution of transactions, we correct the

162

4. Empirical Study

10000 +

1000+
300 4

100 +
504

104
54
2
14

Transaction size distribution (log10)

Fig. D.1: An overview of the distributions of transactions sizes for each subject system.

with the constraint that the transaction must contain at least two artifacts.
This constraint ensures that, at the minimum, a transaction can be split into
a query of at least one artifact and an expected outcome of at least one. Each
of these transactions is randomly split into a non-empty query and a non-
empty expected outcome. The resulting 1100 queries are executed using each
of the three algorithms, and for each of (a) the 24 scenarios in the coarse-
grained study, (b) the 123 scenarios in the fine-grained studies, and (c) the
385 scenarios in the length35k study. This setup yields a total of 1100 - 3{24 +
123 +386) = 1758900 data points for each of the 19 systems, where each
data point is the estimated impact set for a given query (33.42 million data
points in total). The longitudinal study adds another 151 scenarios for the
seven systems considered, yielding an additional 1100 - 3 - 151 = 498 300 data
points which brings the total close to 34 million. Note that in each of the
scenarios, we only mine from transactions that are older than the transaction
T that was used to generate the query. In this was we respect the historical
time-line for the query and the transactions used to address that query.

4.5 Estimating the Impact of a Change

All queries are executed using each of the three rule mining algorithm. Recall
from section 2 that, in the context of targeted association rule mining, execut-

sample size to the number needed for a non-parametric test to have the same ability to reject
the null hypothesis. This correction is done using the Asymptotic Relative Efficiency (ARE). As
AREs differ for various non-parametric tests, we choose the lowest coefficient, 0.637, yielding
a conservative minimum sample size of 657/0.637 = 1032 transactions. Hence, a sample size
of 1100 is more than sufficient to attain 99% confidence with a 5% confidence interval that the
samples are representative of the population.

163

Paper D.

ing a query Q entails the generation of a set of association rules. The impact
set of Q is the list of consequents of the rules generated for Q, where such
rules are ranked according to their interestingness. While a number of inter-
estingness measures have been defined over the years, in our study we rank
association rules based on support and confidence [14]. The support of a rule is
the percentage of transactions in the history containing both the antecedent
and the consequent of a rule. Intuitively, high support suggests that a rule is
more likely to hold because there is more historical evidence for it. On the
other hand, the confidence of a rule is the number of historical transactions
containing both the antecedent and the consequent divided by the number
of transactions that contain only the antecedent. Intuitively, the higher the
confidence, the higher the chance that when items in the antecedent of a rule
change, the items in the consequent also change. We configure each mining
algorithm to rank rules using support, breaking ties based on confidence.
This strategy has been applied in several association rule mining approaches
for software change impact analysis [11, 12, 23, 24]. Note that we consider
only the largest interestingness score for each consequent. This means that,
for the purpose of this study, we do not consider rule aggregation strate-
gies [26].

4.6 Quality Measures

We empirically assess the quality of the change impact sets generated using
two measures, Average Precision (AP) and Applicability.

Definition 2 (Average Precision). Given a query Q, its impact set Ig, and ex-
pected outcome Eq, the average precision AP of 1 is given by

g
AP(Ig) = i P(k) * Ar(k) (D.1)
k=1

where P(k) is the precision calculated on the first k items in the list (i.e., the frac-
tion of correct artifacts in the top k artifacts), and Ar(k) is the change in recall
calculated only on the k — 1" and k™ artifacts (i.e., the number of additional correct
items predicted compared to the previous rank) [27].

As an overall performance measure for a scenario (i.e., for a given history
length and age) across a system, we use the Mean Average Precision (MAP)
computed over all the queries executed for a given scenario.

Average Precision is a standard measure commonly used in Information
Retrieval to assess the extent to which a list of retrieved documents includes
the relevant documents for a query. However, when using association rule
mining, it is not always possible to generate such list. This can happen for
example when there are no transactions in the history whose items changed

164

5. Results and Discussion

at least once with an item in the query. While this scenario is unlikely for
long histories, the chance of finding a previous transaction involving an ar-
tifact from the query decreases as the history length shortens. Therefore, we
define Applicability as the percentage of queries for which an impact set can
be generated (i.e., where the history contains transactions involving items
from the query).

4.7 Bootstrapping Procedure

The distribution of AP values is unsurprisingly highly left skewed because
these values drop quickly when there is no correct artifact in the first few po-
sitions. For example, consider three ranked lists for a query whose expected
outcome includes a single artifact. In the first list the correct artifact is first, in
the second it is second, and in the third it is third. In this case the AP values
are 1.00, 0.50 and 0.33 respectively. AP values can drop even faster if there is
more than one relevant artifact.

The nature of our study also requires looking at various 2-way interac-
tions, which is infeasible for certain interactions when using non-parametric
methods. For these reasons we apply bootstrapping to approximate the sam-
pling distribution. Doing so preserves centrality (i.e., the mean does not
change), but yields an approximately normal distribution of AP values.

5 Results and Discussion

This section presents the results of the coarse-grained and fine-grained anal-
ysis of history length and age described in section 4. In particular, the results
of the coarse-grained study that is described first motivates two fine-grained
studies: (1) the impact of various history lengths at the fixed age zero, and
(2) the impact of various history ages for the fixed history length 35 000.

5.1 Coarse-grained Study

Table D.3 presents the results of an ANOVA explaining the AP values using
the data of the coarse-grained study. In addition to history length and age,
which are the main variables of interest, we include subject system and algo-
rithm as as explanatory variable to allow the statistical model to account for
system or algorithm specific variations. We also include all two-way interac-
tion terms to account for possible interaction effects.

With extremely small p-values and F-Values substantially larger than one,
all four primary explanatory variables are highly statistically significant. This
is also reflected by the effect sizes (shown here as Partial eta~2). A QQ-plot
of the residuals (not included) showed minimal deviation from the diagonal,
indicating a near normal distribution.

165

Paper D.

Table D.3: ANOVA results for the coarse-grained study

Explanatory variable Partial etaa Sum Sq Df F-value p-value
subject system 076 297347 18 206196.51 < 0.00001
algorithm 036 536.86 2 335061.64 < 0.00001
history length 020 236.63 3 98453.51 < 0.00001
age 0.63 157433 5 39302232 < 0.00001
subject system:algorithm 0.05 49.12 36 1703.01 < 0.00001
subject system:history length 0.06 58.89 43 1709.41 < 0.00001
subject system:age 0.18 20458 90 2837.39 < 0.00001
algorithm : history length 0.00 363 6 755.55 < 0.00001
algorithm : age 0.01 9.79 10 1221.59 < 0.00001
history length : age 0.01 580 15 482.59 < 0.00001

The interactions between the primary explanatory variables have in gen-
eral a weak impact, as shown their relatively small F-value and effect size. In
particular, there is only a very small interaction between the main variables
of interest, history length and age, which is visible as the different slopes of
the lines in the interaction plot shown in Figure D.2. This graph also shows
that the MAP values for age zero are considerably higher than those of the
other ages, which are bunched relatively close together. The gap going from
age zero to age 1000 is the motivation for the fine-grained study zooming in
on the smaller ages.

One interaction that is a bit larger is the one between subject system and
age, indicating that the impact of history age on recommendation quality is
to some extent system dependent, in contrast to, for example, the impact of
history length or algorithm which is more or less similar over all system.

Table D.4 reports Tukey’s Honest Significant Difference (HSD) test for
the ANOVA of Table D.3 applied to history length and age. Tukey’s test
partitions values of history length and age in groups in such a way that
values belonging to the same group do not yield statistically significantly

Table D.4: Tukey’s HSD for History Length and History Age (each sorted on decreasing MAP
values).

History Length History Age
length MAP group age MAP group
35000 0.1567 a 0 0.2185 a
25000 0.1530 b 1000 0.1430 b
15000 0.1423 ¢ 2000 0.1312 ¢
5000 0.1155 d 3000 0.1225 d

4000 0.1155 e
5000 0.1096 f

166

5. Results and Discussion

0 ==-2000 ---- 4000
Age
---- 1000 = = 3000 - —- 5000
Co-Change ROSE TARMAQ
0.25 4
0.20 4
o T e
g 0.15 4 ete e e P P TR
—///‘ /--, - . ",/,/"—.—':.’ _____
D S [[7z 2
ool Lemt s
0104 7 L SO e o

5000 15000 25000 35000 5000 15000 25000 35000 5000 15000 25000 35000
History Length

Fig. D.2: Interaction plots of Age by History Length for the various algorithms.

different MAP values. The test suggests three main conclusions: First, there
are significant differences between all levels of each variable. Second, for
history length, the best performance is attained by the largest length value
of 35000. We will use this particular length value later in the fine-grained
study of history age (subsubsection 5.2). Finally, for history age, the best
performance is attained by age zero, which we hence use in the fine-grained
study of history length (subsubsection 5.2). Both the graphs and Tukey’s
HSD indicate that very recent commits have a strong influence on the ability to
predict change impacts. These three findings motivated our fine-grained study
of small history length and age.

Focusing on the age zero data only, Figure D.3 shows the applicability of
TarMmAQ, along with the overall MAP and the MAP for applicable queries.
The applicability of TARMmAQfollows the expected trend: the algorithm grows
more applicable as the history length increases. The results of the coarse-
grained study also suggest that the overall MAP and the MAP for applicable
queries are very similar. However, intuition suggests that the difference be-
tween the two will increase as the history length shortens.

5.2 Fine-grained Study

The coarse-grained analysis motivates the study of small history lengths and
ages. The results of these studies are presented and discussed in the follow-
ing two subsections.

167

Paper D.

—— Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ

100% +
75% 4

50% —
25%
0% A

T T T T T T T T T
10000 20000 30000 10000 20000 30000 10000 20000 30000

History Length

Fig. D.3: Coarse-level study of history length

History Length

Note that one challenge that shorter history lengths bring is a higher likeli-
hood that for a given query no other commit from the history includes any
artifacts from the query. In such cases TARMAQor Co-CHANGEare not applica-
ble as they are unable to generate an impact set. Note that this occurs already
at an earlier stage for RosE, as it needs a full match of the query in the history.
While it is possible to assign an AP of zero to such cases, doing so is harsh
because the algorithm can correctly inform the user that it is not applicable.
From a user perspective, this is substantially better than an incorrect impact
set (where AP is truly zero). To account for this, we report three things:
applicability, MAP for applicable queries, the value of MAP for only applica-
ble queries, and overall MAP, the value of MAP computed using all queries
including those to which an algorithm is not applicable.

An ANOVA for the fine-grained study of history lengths using age zero
tfinds largely the same results as the coarse-grained analysis, as shown in
Table D.5. Now the effects of age are factored out, the effects of history
size become more prominent, and from the interactions we also see that the
differences between individual systems have a greater impact on the effects
of history length on recommendation quality.

Tables D.6 and D.7 show the results of Tukey’s HSD for the scenario col-
lections length2000, length200, and length20 on respectively overall MAP and
applicable MAP. The results show that for overall MAP, statistically signifi-
cantly higher MAP values are produced by long histories, whereas for ap-
plicable MAP this is reversed: statistically significantly higher MAP values
are produced by short histories. Note that because each column represents

168

5. Results and Discussion

Table D.5: ANOVA results for the fine-grained study of length35k (with age = 0).

Explanatory variable Partial eta™ Sum Sq Df Fvalue p-value
Subject System 0.68 5641.18 18 418709.25 < 0.0001
Algorithm 0.24 854.90 2 571083.84 < 0.0001
History Length 0.72 6879.40 55 167110.18 < 0.0001
Subject System:Algorithm 0.04 113.01 36 4194.01 < 0.0001
Subject System:History Length 031 121213 990 1635.79 < 0.0001
Algorithm:History Length 0.03 93.80 110 1139.22 < 0.0001

a separate sample of the commits, the MAP values should not be directly
compared between columns, only the trends are comparable.

In particular, in the first column the scenario with a history length of
100 yields statistically significantly higher MAP than all the other scenarios.
The same trend is seen in the second column, where longer history yields a
strictly decreasing MAP value. Finally, the third column shows that histories
of lengths as short as 1 or 2 commits are very effective in estimating the
change impact set, while longer histories up to 20 commits are progressively
less effective.

This data suggests that very short histories yield the best results and fur-
thermore that the extent to which artifacts contained in past transactions are
related to the artifacts in a query progressively decreases as history length
increases. In other words older transactions are more likely to contain arti-
facts unrelated to a query. However, an explanation for this seemingly odd
behavior is found in the considerably lower applicability of TARMAQas the
history length shortens.

This data suggests two contrasting trends: One the one hand it shows
that the longest histories yield the best overall MAP results and the extent to
which artifacts contained in past transactions are related to the artifacts in a
query progressively increases as history length increases. On the other hand
it shows that very short histories yield the best results for applicable MAP
and the extent to which artifacts contained in past transactions are related to
the artifacts in a query progressively decreases as history length increases. An
explanation for these contrasting trends is found in the considerably lower
applicability of the algorithms as the history length shortens. This trade-off
can be seen in Figure D.4, which reports the applicability, MAP, and MAP for
applicable queries in the three fine-grained studies on the history length. In
particular, across all granularities, applicability and MAP show an increasing
trend, while the MAP for applicable queries shows a decreasing trend. This
is expected because, the longer the history, the higher the chance that at
least one past transaction contains artifacts related to the query, which raises
applicability and (overall) MAP.

These trends continue for longer history lengths, as is evidenced by the

169

Paper D.

Table D.6: Tukey’s HSD for overall MAP achieved on the length2000, length200, and length20
collections (each sorted by decreasing MAP values).

length2000 length200 length20
length MAP group || length MAP group || length MAP group
2000 0.1857 a 200 0.1329 a 20 0.0829 a
1900 0.1844 b 190 0.1319 b 19 0.0818 b
1800 0.1832 ¢ 180 0.1314 b 18 0.0805 ¢
1700 0.1814 d 170 0.1298 ¢ 17 0.0798 d
1600 0.1799 e 160 0.1289 d 16 0.0783 e
1500 0.1786 f 150 0.1271 e 15 0.0769 f
1400 0.1773 g 140 0.1261 f 14 0.0756 g
1300 0.1751 h 130 0.1241 g 13 0.0742 h
1200 0.1737 i 120 0.1224 h 12 0.0727 i
1100 0.1719 j 110 0.1200 i 11 0.0708 j
1000 0.1691 k 100 0.1181 j 10 0.0692 k
900 0.1670 1 90 0.1155 k 9 0.0675 1
800 0.1648 m 80 0.1124 1 8 0.0657 m
700 0.1614 n 70 0.1097 m 7 0.0635 n
600 0.1583 0 60 0.1059 n 6 0.0609 0
500 0.1538 p 50 0.1019 0 5 0.0576 p
400 0.1486 q 40 0.0968 p 4 0.0539 q
300 0.1422 r 30 0.0913 q 3 0.0493 r
200 0.1343 s 20 0.0834 r 2 0.0427 s
100 0.1185 t 10 0.0696 s 1 0.0321 t

collection length35k, which is shown in Figure D.5. The analysis of this figure,
combined with the results of Tukey’s HSD (not shown), allow us to answer
RQ1 as follows.

RQ 1. What influence does history length have on impact analysis quality?

RQ 1.1. Can we identify a lower bound on the history length that is needed to
learn enough about the system to produce acceptable impact analysis results?

Given the leveling off of applicability as history length grows, our analysis
suggests that 25000 commits is the point at which there is sufficient history to
learn enough about the system to produce acceptable impact analysis results.

Of course those willing to tolerate lower applicability, could consider shorter
histories.

RQ 1.2. Do we see a diminishing return in impact analysis quality as history
length increases?

In short, Yes. Our analysis for the three algorithms shows that their per-
formance consistently increases for histories up to 15000 commits, and then
levels off and remains stable for longer histories (Figure D.5). Therefore, we
identify the point of diminishing return as 15000 commits.

170

5. Results and Discussion

Table D.7: Tukey’s HSD for applicable MAP achieved on the length2000, length200, and length20
collections (each sorted by decreasing MAP values).

length2000 length200 length20
length MAP group length MAP group || length MAP group

100 03383 a 10 0.3765 a 1 04017 a

200 0.3298 b 20 0.3667 b 2 03989 b

300 0.3224 ¢ 30 0.3602 ¢ 3 03949 ¢

400 0319 d 40 03513 d 4 03929 d

500 0.3165 e 50 0.3488 e 5 0388 e

600 0.3138 f 60 03449 f 6 03870 f

700 0.3118 g 70 0.3426 g 7 0.3850 g

800 0.3106 h 80 0.3397 h 8 0.3832 h

900 0.3086 i 90 0.3385 i 9 0.3801 i
1000 0.3078 j 100 0.3369 j 11 0.3788 j
1100 0.3074 j 110 0.3350 k 10 0.3787 j
1200 0.3060 k 120 0.3335 1 12 0.3780 j
1400 0.3058 kl 130 0.3321 m 13 0.3758 k
1300 0.3051 Im 140 0.3312 n 14 03749 k
1500 0.3047 mn 150 0.3299 0 15 0.3740 1
1800 0.3045 mn 160 0.3292 0 17 0.3733 Im
1600 0.3044 mno 170 0.3277 p 16 0.3730 m
1700 0.3043 no 180 0.3272 Pq 18 0.3718 n
1900 0.3041 no 190 0.3265 q 19 0.3716 no
2000 0.3037 0 200 0.3254 r 20 0.3709 0

RQ 1.3. Can we identify an upper bound on history length where outdated knowl-

edge starts to negatively affect our analysis causing quality to decrease below accept-
able levels?

No, our analysis of histories up to 35000 transactions does not show any
evidence of performance degrading because of older outdated commits. In
subsection 5.4 we will consider histories longer than 35000 transactions.

History Age

Parallel to Table D.3, the ANOVA for the three age collections (not shown),
finds age and subject system to be highly statistically significant. Figure D.6
show the results for Tukey’s HSD on the collections age2000, age200, and age20
for respectively overall and applicable MAP. In both cases, the scenarios all
appear in age order, showing a few overlapping groups. for both MAPs and
in all three collections, the scenario with age zero performs statistically better
than the next smallest age. While the gap in MAP gets smaller as the ages in
the scenarios get closer, the MAP differences are significant even when going
from an age of one commit to an age of two commits in the age20 collections.

Figure D.6 shows the trends for applicability, overall MAP, and MAP for
applicable queries for the three algorithms. Across the collections, the drop

171

Paper D.

—— Applicability MAP when applicable Overall MAP

Length 2000 Length 200 Length 20

100% |

75%
50% /—’- /_,/
25%

0% -
100% |

abueyp-0p

75% =

3S0d

50% -
s ——

0% -
100% |

75%
50% /—’. /_,/

25% = 7 /

0% =

OVINYVL

500 1000 1500 2000 50 100 150 200 5 10 15 20
History Length

Fig. D.4: The fine-grained study’s three history-length scenario collections showing the inverse
relation between MAP and applicability.

off from the scenario characterized by age zero to the next age is visually
evident, although it clearly gets less prominent from age2000 to age200, and
finally to age20. Moreover, we see that even though individually values dif-
fer, the trends are very similar across the three algorithms. Based on the fast
deterioration of recommendation quality when age increases, we do not con-
sider the study of larger ages than 2000 to be relevant (i.e., we do not include
a study comparable to length35k).

Similar to RQ1, the plots in Figure D.6 and Tukey’s HSD in Figure D.6
enable us to answer RQ2.

RQ 2. What influence does history age have on impact analysis quality?

RQ 2.1. Can we identify an upper bound on the history age beyond which the
generated model has grown too old and can no longer produce acceptable impact
analysis results?

Such a bound is a function of ones tolerance for lost precision, which depends
on the use and application of targeted association rule mining for change
impact analysis. Similar to the length analysis (subsubsection 5.2), the falloff
in precision tends to gradually narrow. However, the falloff is initially quite
steep. For example, in Table D.9 the second entry shows a reduction of 11.5%

172

5. Results and Discussion

—— Applicability ----

MAP when applicable — - -

Overall MAP

100%

75%

50%

25% 4

0% 1

abueyp-o0o

100%

75% 4

50% A

25%

0% A

3SOY

100% o

75%

50% 4

25%

0% A

OVINHVL

20000
History Length

Fig. D.5: Results from the large-scale fine-grained investigation of length35k.

—— Applicability ----

MAP when applicable — - -

Overall MAP

Age 2000 Age 200 Age 20
100% =
\ ~—
75% = o)
9
50% Q
]
Q
25% Rz Sommrrrroomoomooo | | Mersssrmmrnnnnn | €
0% -
100% =
75% -
by}
50% AN | || T I_8n
26% A —frprme e ey L L T
o I N N O B P S B e T
0% -
100% =
\ N M —
75% -
3
50% 2
3
25% | Nzoesa-- L ECE T el e e el e faltl S msnemomoemnmsnotoe
0% -
T T T T — L T T T L T T T T
0 500 1000 1500 2000 O 50 100 150 200 O 5 10 15 20
Age

Fig. D.6: The fine-grained study’s three history-age ranges shown from coarsest to finest

173

Paper D.

Table D.8: Tukey’s HSD for overall MAP achieved on the age2000, age200, and age20 collections
(each sorted by decreasing MAP values).

age2000 age200 age20
age MAP group age MAP group age MAP group
0 02301 a 0 02330 a 0 02290 a

100 0.1857 b 10 02093 b 1 02204 b

200 01798 ¢ 20 02029 ¢ 2 02168 ¢

300 01769 d 30 01994 d 3 02140 d

400 01733 e 40 0.1969 e 4 02124 e

500 0.1703 f 50 0.1946 f 5 02107 f

600 0.1686 g 60 0.1927 g 6 0.2092 g

700 0.1668 h 70 0.1907 h 7 0.2082 h

800 0.1647 i 80 0.1894 i 8 0.2074 i

900 0.1636 j 90 0.1880 j 9 0.2065 j
1000 0.1619 k 100 0.1875 j 10 0.2053 k
1100 0.1605 1 110 0.1865 11 0.2047 k
1200 0.1591 m 120 0.1856 1 12 0.2034 1
1300 0.1580 n 130 0.1850 Im 13 0.2033 Im
1400 0.1565 o 140 0.1844 mn 14 0.2026 mn
1500 0.1554 p 150 0.1838 no 15 0.2021 no
1600 0.1542 q 160 0.1832 op 16 0.2014 0
1700 0.1531 r 170 0.1828 p 17 0.2004 p
1800 0.1521 s 190 0.1817 q 18 0.2000 Pq
1900 0.1511 t 180 0.1817 q 19 0.1995 qr
2000 0.1503 u || 200 0.1810 q 20 0.1989 r

Table D.9: Tukey’s HSD for applicable MAP achieved on the age2000, age200, and age20 collec-
tions (each sorted by decreasing MAP values).

age2000 age2000 age2000
age MAP group age MAP group age MAP group
0 02994 a 0 03052 a 0 02990 a
100 0.2650 b 10 02857 b 1 02917 b
200 02607 ¢ 20 02805 ¢ 2 02882 ¢
300 02582 d 30 02779 d 3 02862 d
400 02548 e 40 02758 e 4 02849 e
500 02525 @ f 50 0.2743 f 5 02836 f
600 0.2516 g 60 0.2728 g 6 0.2823 g
700 0.2509 g 70 0.2715 h 7 0.2816 gh
800 0.2488 h 80 0.2703 i 8 0.2809 hi
900 0.2485 h 90 0.2699 i 9 0.2801 ij
1000 0.2474 i 100 0.2687 j 10 0.2794 j
1100 0.2467 ij 110 0.2679 jk 11 0.2794 j
1200 0.2462 jk 120 0.2676 k 12 0.2780 k
1300 0.2456 k 130 0.2666 1 13 0.2776 k1
1400 0.2438 1 140 0.2664 1 14 02774 k1
1500 0.2438 1 160 0.2662 1 15 02771 Im
1600 0.2425 m 170 0.2659 1 16 0.2763 m
1700 0.2423 m 150 0.2659 1 17 0.2754 n
1800 0.2407 n 180 0.2647 m 18 0.2754 n
1900 0.2400 no 190 0.2644 m 19 0.2750 no
2000 0.2398 o 200 0.2641 m 20 0.2744 o

174

5. Results and Discussion

for age2000, 6.4% for age200 and 2.4% for age20. When using a 10% tolerance
cutoff of the maximum achievable applicable MAP as an arbitrary maximal
acceptable loss, the upper bound for history age is 40 commits. In summary,
we conclude there is a bound on age for RQ 2.1, where the actual value for
this bound is a function of the user’s tolerance and experience.

RQ 2.2. Is there a point at which impact analysis quality ceases to deteriorate as
history age increases?

Similar to RQ 2.1, the point of diminishing deterioration is subjective, as it
depends on the cutoff for the MAP values. Following RQ 2.1, we again use
a 10% cutoff. The lowest applicable MAP in Table D.9 is 0.2398, which is
for age 2000. Using this value, the target applicable MAP value is 0.2398 +
10% = .22638, which is crossed between age 100 and age 200. Thus, while
the performance is monotonically decreasing as age increases, it does reach
a point after which the remaining deterioration is not significant. Therefore,
it is possible to find a point beyond which impact analysis quality ceases to
deteriorate significantly as history age increases.

5.3 Project Characteristics

RQ 3. Can we predict good values for history length and age for a given software-
system based on characteristics of its change-history (such as the average transaction
size and the number of developers)?

RQ3 aims to support a team of developers working on a specific system by
providing practical guidelines for selecting an appropriate value for history
length and for predicting at what age a model has sufficiently deteriorated
to need rebuilding.To answer this question, we build six separate linear re-
gression models, three that predict the value of history length for TARMAQ,
Co-CHANGE, and RosE, and three that consider age. In both cases, the set of
explanatory variables includes the following system demographics (see Ta-
ble D.1) that aim to capture aspects of the development history, team, and
development process: (1) number of unique artifacts in the change history,
(2) average number of artifacts in a commit, (3) number of developers throughout
the change history, (4) mode and median inter-commit time between two com-
mits by the same developer, (5) average and median length of commit streak (a
streak is a number of consecutive commits by the same developer). The val-
ues of these demographics were obtained by analyzing the change histories
for the various systems.

In the analysis of this section, we omit Cisco and KM for which we cannot
disclose the demographics. Also, similar to the analysis in subsection 5.1, the
regression analysis for history length is performed using an age of zero, while
the regression analysis for age is performed using a history length of 25 000.

175

Paper D.

We begin with the three linear regression models for history length. Each
requires determining a target history length for each system. A simple se-
lection would be the history length that produced the highest MAP value.
Unfortunately, from the statistical analysis this value is not unique. Thus,
from the set of top-performing history lengths, we selected the smallest value
under the assumption that requiring less history is preferable (e.g., leads to
more efficient computation of recommendations). In summary the target
value for history length for each system is determined by applying Tukey’s
HSD test and then selecting from the top group (the ‘a’ group) the smallest
history length.

We then fit a linear model to the data using R’s Im function starting with
all the explanatory variables and then applying backward elimination. The
elimination phase removes the least statistically significant variable and then
regenerates a new model. For example, in TARMAQ's initial model the vari-
able median inter-commit streak has the highest p-value of 0.74. The elimina-
tion step removes this variable and then rebuilds the model. This process is
repeated until only significant variables remain.

It is also possible to consider interactions between the explanatory vari-
ables. Preliminary work with the demographics made it quite evident that
there were interactions among the explanatory variables. Unfortunately, with
our 17 systems there is insufficient data to build a model that includes all
pair-wise interactions. As a compromise an initial model was generated with-
out any interactions and then interactions were added for all variables having
a p-value less then 0.33. The elimination process is then applied to produce
the final model. Note that in order to maintain a well-formed model some
variables with p-values greater than 0.05 are retained in the final model when
they are part of a significant interaction.

The remainder of this investigation first considers TARMAQ before turning
to Co-CHANGE and then finally Rose. The final model for TARMAQ, shown in
Table D.10, is statistically significant having a p-value of 0.000934. The model
includes three significant explanatory variables and three significant interac-
tions, which makes it challenging to understand the effects of the variables.
One standard approach to doing so looks at the pair-wise interactions when
the third variable takes its mean value. The resulting interaction graphs,
shown in Figure D.7, were generated from the model shown in in Table D.10
using the following values:

Variable First Quartile Mean Third Quartile
Average Number of Artifacts per Commit (ANAC) 5.5 11.8 12.6
Median Inter Commit Time (MICT) 0.0 2.6 4.0
Number of Unique Artifacts (NUA, in 1000’s) 30.0 167.0 232.0

176

5. Results and Discussion

Table D.10: Regression model predicting history length for TARMAQ

Explanatory variable Estimate Std. Error t-value p-value
(Intercept) 8859.2 2356.20 3.76 0.00372
Median Inter Commit Time (MICT) 1342.3 740.50 1.81 0.09995
Number of Unique Artifacts (NUA, in 1000s) 141.5 23.80 5.93 0.00014
Average Number of Artifacts per Commit (ANAC) -673.8 342.20 -1.97 0.07769
MICT : NUA -14.9 3.67 -4.21 0.00180
MICT : ANAC 192.3 75.60 2.54 0.02925
NUA : ANAC -3.1 0.67 -4.59 0.00099

In addition to providing an affirmative answer to the first half of RQ3, it
is interesting to consider the parameter estimates found in the model and
discuss possible explanations for the relations between the explanatory vari-
ables and the response variable (i.e., history length). Starting with the three
explanatory variables, the analysis shows that as median inter-commit time
(MICT) increases a longer history length is needed. A potential explanation
of this relation is working context: it is likely that a developer works on a
sequence of related modifications, i.e. a sequence of commits from that de-
veloper likely contains related artifacts. When MICT is zero, the commits
of a developer tend to follow each other directly in the history and short
history lengths suffice to achieve high precision recommendations. As the
value of MICT grows there are an increasing number of interleaved commits
from other developers, with other working contexts, which means that longer
history lengths are needed to include the relevant artifacts and achieve high
precision recommendations.

The model also shows that as the number of unique artifacts (NUA) in-
creases, so does the predicted history length. Indeed, the more artifacts con-
tained in a system, the further apart commits containing artifacts relevant to
a query are likely to be, and hence a larger history is required.

NUA : ANAC (w. MICT at its mean) MICT : NUA (ANAC fixed at its mean) MICT : ANAC (w. NUA at its mean)

30000

T =

200004

15000+

History Length

10000+

5000+

50 100 150 200 0 7 2 3 7 7 9 1
Number of Unique Artifacts Median Inter-Commit Time Average Changes per Commit
Average Changes per Commit —5.5 —11.8 —12.6 Number of Unique Artifacts 30 —167 —232 Median Inter-Commit Time 0.0 —-2.6 —4.0

Fig. D.7: Interaction plots for the three interaction terms of the regression model shown in
Table D.10

177

Paper D.

Finally, the coefficient associated with average number of artifacts per
commit, is negative, thus indicating an inverse relationship. In other words,
as the average “size” of a commit increases, the required history length de-
creases. One explanation for this relation is that larger commits contain more
information per commit. For example, to conclude that changing a impacts b
and ¢ can be derived from the single size-three commit {4, b, c}, but requires
two size-two commits: {a,b} and {a,c}. Another explanation is the combi-
nation of working context and commit practices. Developers that tends to
create large commits are likely to commit on a task-by-task basis, creating a
transaction that contains all artifacts related to a modification task at once.
This behavior makes it less likely that there is information with respect to
related artifacts contained in a short history length. Conversely, developers
that split a task in several smaller commits, i.e., decrease the number of arti-
facts per commit, spread out artifacts related to their working context over a
larger number of commits, thereby increasing the history length required to
achieve high precision recommendations.

Figure D.7 plots the three interactions. In the first of the three graphs, as
the average number of changes per commit increases the impact of the num-
ber of unique artifacts decreases. The relative slopes of the lines indicates
that this effect is not large, which is also evident from its small parame-
ter estimate (see the last line of Table D.10). Looking at the middle graph,
the relative impact of the number of unique artifacts is more pronounced as
evidenced by the greater difference in the line’s slopes. In this case it is inter-
ested that as this value increases, the impact of the median inter-commit time
approaches zero. Conversely, for smaller systems the median inter-commit
time has a greater influence. Finally, from the third chart, the average number
of changes per commit has a greater impact for smaller median inter-commit
times. While a higher average number of changes per commit brings a need
for less history the reduction is greater them the median inter-commit time is
small. The smallest history requirement comes from larger commits without
intervening commits of other developers.

While statistically significant with a p-value of 0.0345, the model for Co-
CHANGE omits the median inter-commit time. Perhaps because of it’s simpler
rules. It also includes smaller parameter estimates (for example the coefficient
for the number of unique artifacts is 141.5 with TARmMAQ, but only 60.7 for
Co-CHANGE. Like the TARMAQ model the sign of the average changes per
commit and the interaction of the two is negative but again both have smaller
magnitude (-6.6 and -1.7, respectively). Thus overall, the influences of the
explanatory variables in the Co-CHANGE model are muted relative to the
TARMAQ model.

Finally, the Rose model, which has a p-value of 0.00114, is similar to the
TArRMAQ model in that it includes the same explanatory variables and inter-
actions. Furthermore, the coefficients are very similar (for example, consider

178

5. Results and Discussion

the average number of changes per commit, which is -673.8 in the TARMAQ
model and -673.3 in the Rose model. The largest difference is the coefficient
of median inter-commit time, which in the Rose model is 1708 compared to
1342 in the TARMAQ model. This difference indicates that ROSE is more sus-
ceptible to changes in the median inter-commit time than TARMAQ. Where
RosE needs less history when commits are clumped by relevance but as the
commits become more intermixed, ROSE needs grow to exceed those of TAR-
MAQ.

The second part of RQ3 looks at predicting how old the history can grow
before it needs to be updated with the latest commits. In order to do so, we
first define a set of MAP levels indicating that the history is too old. Specif-
ically, we define the three MAP target levels of 95%, 90% and 80% of the
maximum overall MAP value that can be achieved over the different history
ages. We perform linear regression with backward elimination, using each of
these percentages separately as the response variables, and the demographic
information as explanatory variables. For all three response variables and all
three techniques, the elimination process removes all the explanatory vari-
ables, failing to produce a regression model. This indicates that variations in
the demographic variables are not effective predictors of the rate at which a
model deteriorates.

In summary, this analysis allows us to answer RQ3: Good values for his-
tory length can be predicted. Indeed, a team of developers using TARMAQ
can use the regression model found in Table D.10, to predict the amount of
system’s history that should be used. In contrast, no similar correlation exists
for predicting the deterioration of change impact analysis quality based on
history age.

5.4 Longitudinal Study

In subsection 5.2 we considered software systems with change histories con-
sisting of up to 35000 transactions for answering RQ 1.3:

RQ 1.3. Can we identify an upper bound on history length where outdated knowl-
edge starts to negatively affect our analysis causing quality to decrease below accept-
able levels?

For these systems we could not find any evidence that precision degrades
when older transactions are used for impact analysis. While 35000 is a rea-
sonably large change history, software systems which have been built over
many years by a plethora of developers see much greater numbers. In this
section, we explore the effect of history length for rather extreme values,
reaching over 540 000 transactions in the case of the Linux kernel.

When considering systems with (very) long histories, it becomes increas-
ingly harder to maintain that they are of approximately equal length. Thus

179

Paper D.

—— Applicability ---- MAP when applicable —-- Overall MAP

Co-Change ROSE TARMAQ

100%

75%

50%

25% B R e N I s e e T

0% 4

WIAJ|

100% A
75%
50% o

25% " sszsmssrmeem s e iR S p S e

0% 4

aum

\} Q Q Q Q O O Q Q Q Q L O Q Q Q \}
Q*QQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ
N BT T AT PN AR P PR P A N

History Length

Fig. D.8: Wine and LLVM

—— Applicability ---- MAP when applicable —-- Overall MAP

Co-Change ROSE TARMAQ

100%

75% ~ -

50% o

. Iy ————
5% e Lok o1 i N e i e e vy sy ey ot

0% —

sureiqyal

100% o
75%
50%4 | | meemeceamcea e aaaaaman
25 LS L L I I L L | | e e e e

0%

Reuay|

100%
75% 4
50%

25%4 o R

Bigem

History Length

Fig. D.9: Jetbrains, Liferay and Webkit

180

5. Results and Discussion

—— Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ
100% 4
k— k—
75%
50% + 7

Nop—0)0a6

25% o

0% +
100% A

50%
259 4 //’F’—

0% +
Q 0 O O O 0O O O 0O O O8O 0O OO0 O 0O 0O O O
FTETFILFLFLSFTITFLFLFLSLFT TSI LSS
IR S S A A M S A S S PO I OIS

xnui|

History Length

Fig. D.10: Linux and Gecko

for this study, we analyze each software system individually. We first plot the
trends in applicability, MAP when applicable and overall MAP, as earlier. The
systems are divided into three groups based on approximate history length.
In Figure D.8, we plot the trends for wine and Ilvm which had around 100 000
transactions, then in Figure D.9 we plot the trends for jetbrains, liferay and
webkit which had around 150000 transactions. Finally, in Figure D.10 we
plot the trends for gecko and Linux, the latter of which reached over 500 000
transactions.

Visually, we see the same trends as in Figure D.5 resurfacing in most cases;
a steady rise in applicability up until 30 — 40,000, and stability in the MAP
when applicable and overall MAP as history length increases further. However,
in the case of jetbrains and Linux it seems to take longer before stability is
reached.

To analytically investigate whether long histories deteriorate precision, we
first assume that they do. As such we compare the APs of a relatively short
but stable history length, against the APs at the maximal available history
length with respect to each software system. Throughout our study we have
found that history lengths around 30000 consistently have proved to per-
form well, we therefore choose this length as our “short length”. Our initial
hypothesis is thus:

Hp : The AP at maximal length is not less than the AP at length 30 000.
Hj : The AP at maximal length is less than the AP at length 30 000.

181

Paper D.

Subject System p-value Cliff’s delta Magnitude of Effect

gecko-dev 0.00 0.14 negligible
jetbrains 0.00 0.48 large
liferay 0.01 0.05 negligible
linux 0.00 0.92 large
llvm 0.10 0.03 negligible
webkit 0.00 0.08 negligible
wine 0.00 0.21 small

Table D.11: Results for running a t-test with alternative hypothesis: "Precision of max history
larger than precision at length 30 000"

Perhaps unsurprisingly given our findings so far, we do not obtain significant
results for any of the systems, i.e., AP at maximal length is not significantly
less than AP at length 30000. On the contrary, based on the figures it seems
more likely that maximal histories actually improves precision compared to
the shorter 30 000. We therefore perform the reversed t-test as well:

Hp : The AP at maximal length is not greater than the AP at length 30 000.
Hj : The AP at maximal length is greater than the AP at length 30 000.

In this formulation of the t-test we obtain significant results for all software
systems but /[lum. Furthermore, the effect size of the difference as exhibited
through Cliff’s delta supports our earlier visual observation that Linux and
jetbrains continues to see precision gains beyond 30000 transactions. Cliff’s
delta also picks up a small effect for wine. For the remaining systems the ef-
fect is negligible. Furthermore, if we combine the evidence of both one sided
t-tests with the negligible effect size, we have sufficient evidence that there is
no practical difference between the two history lengths for these systems.

In summary, we have been unable to find any evidence that there is an up-
perbound to history length above which outdated information negatively af-
fects the precision of impact analysis, even for extremely long history lengths
as studied here. Therefore we are confident to answer RQ 1.3 negatively.

5.5 Stability Study

As a software system evolves to the point of maturity one might expect that
the quality of change impact analysis on the system also stabilizes. For our
final analysis we therefore ask:

RQ 4. How does choosing a particular history length and history age affect impact
analysis quality throughout the evolution history?

In order to answer RQ 4 we compare a set of recent queries against a set of
older queries and test whether the two distributions can indeed be said to

182

5. Results and Discussion

———————————————————— software system matures -----—--—-———-—-———p
early evolution
ey f=- - - 15000 - - > b= - - 15000 - - >
o %] I
start of change history most recent transactions

Fig. D.11: The stability study compares two separate periods ty and t;, both outside the early
evolution stage, and selected so that queries within each period have access to at least 15000
previous transactions.

be sufficiently equal. Our design is visualized in Figure D.11 where the two
periods in time are labeled ty and t; respectively. It is important to note that
we are not concerned with varying history length/age as done for previous
research questions, we here solely focus on time as an explanatory variable.
However, we must still choose a setting for length and age. In terms of history
age, we set age to zero, as earlier findings in this paper show that aged models
significantly degrade the precision. In terms of history length, we set this to
15 000 for both ty and t;. A history length of 15000 strikes a balance between
applicability (see Figure D.5) and having sufficient space between t; and f;.
If a longer history length were to be used, ty would have to move closer to
t; in order to guarantee that all queries would have at least 15000 previous
transactions. The further the distance between t; and ¢, the stronger we can
state that precision has stabilized.

As we need to test for equivalence between two distributions, we must first
determine a threshold for what we find to be sufficiently equivalent. Equiv-
alence tests need a threshold as one cannot expect to have two exactly equal
distributions in empirical data. Naturally, such a threshold should be an-
chored in the variation expressed in the data. Therefore, we set the equiva-
lence threshold using the standard deviation. Concretely, we first calculate
the mean standard deviation for ty and #; with respect to each software sys-
tem, and then set the equivalence threshold equal to the minimum of these
two values. This process resulted in a threshold of e = 0.034008, Thus if
the difference between values in ty and #; tend to differ more than €, the
likelihood is reduced that we have two equivalent distributions.

Compared to what one could call “normal” hypothesis testing, tests for
equivalence reverses the null hypothesis, we therefore clearly should state our
hypothesis:

Hp : The average precisions in ¢y and t; are different with respect to €
H; : The average precisions in ty and t; are equivalent with respect to €

To test for significant equivalence we use Schuirmann and Westlake’s two one-
sided t-test for equivalence [28, 29] as implemented in the R package equivalence.
In particular, we apply the function tost () to tp and #; with the equivalence

183

Paper D.

threshold €. Running the test results in a p-value < 0.01, thus we can reject
Hy that performing change impact analysis in the two time periods results
in significantly different results. With the difference between ty and t; of
0.016795, and a 99% confidence interval of [0.015263,0.018326], we are well
below the threshold of 0.034008. To be clear, there is a 1% chance that our
confidence interval does not contain the true difference given the population
sample.

Given the results we can conclude that as software systems reach a certain
maturity, here defined as having a change history consisting of at least 15000
transactions, the quality of change impact analysis should remain consistent
in terms of precision. In essence this tells us that most implementation tasks
goes in waves where related artifacts tend to be changed within the same time
window. However, for this study we used a relatively large time window of
15 000 which perhaps could be both reduced in early evolution, and increased
in later evolution. We plan to replicate our study with a greater range of time
windows in the future.

6 Threats to Validity

Realism of Scenarios used in Evaluation: We evaluate mining-based change
impact analysis by establishing a ground truth from historical transactions,
randomly splitting them into a query and an expected outcome of a certain
size. However, this approach does not account for the actual order in which
changes were made before they were committed together to the versioning
system. As a result, it is possible that our queries contain elements that were
actually changed later in time than elements of the expected outcome. This
cannot be avoided when using co-change data obtained from a versioning
system, since the timing of individual changes is lost in that data. It can
be addressed by using another source of co-change data, such as developer
interaction with an IDE, but the invasiveness of that type of data collection
makes that there are only very limited data-sets available, which would pre-
vent a study as comprehensive as presented here. Moreover, since the evolu-
tionary couplings that are at the basis of our change impact analysis form a
bi-directional relation, the actual order in which changes were made before
they were committed has no impact on the result, as goal is not to re-enact
the actual timeline of changes, but to establish a ground truth w.r.t. related
artifacts.

Variation in software systems: We evaluated the impact of history length
and age on mined change impact by studying two industrial systems and 17
large open source systems. These systems vary considerably in size and fre-
quency of transactions (commits), which should provide an accurate picture
of the performance of hyper-rules in various contexts. However, despite our

184

7. Related Work

careful choice, we are likely not to have captured all variations.

Commits as basis for evolutionary coupling: The evaluation in this paper is
grounded in predictions based on the analysis of patterns found in the change
histories. The transactions that make up the change histories are however not
in any way guaranteed to be “correct” or “complete”, in the sense that they
represent a coherent unit of work. Non-related artifacts may be present in
the transactions, and related artifacts may be missing from the transactions.
However, the included software-systems in our evaluation all (except KM)
use Git for version control. As Git provides developers with tools for history-
rewriting, we do believe that this might cause more coherent transactions.
Equal weight for all commits: In our experiment, all transactions from
change history are given equal weight while mining change impact. A com-
pelling alternative viewpoint is that more recent transactions are more rele-
vant for current developments and should therefore be given higher weight
than older transactions. Similarly, one could argue that, because of their
knowledge about the system, transactions committed by code developers
should be given higher weight than transactions committed by occasional
contributors. For the study described in this paper, we do not include such
orthogonal weighing scenarios in our experiments because of their interac-
tion with several of our research questions, such as the length at which con-
sidering a longer history would no longer benefit impact analysis quality,
or the length at which considering a longer history would start decreasing
impact analysis quality due to the inclusion of outdated information. More-
over, the systems considered in this study use a contribution process that in-
cludes code reviewing based on pull requests before taking in changes from
occasional contributors. We believe this process largely removes the differ-
ences between transactions committed by core developers and transactions
that originate from occasional contributors but were accepted after review.
Implementation: We implemented and thoroughly tested all algorithms, ag-
gregators and interestingness measures studied in this paper in Ruby. How-
ever, we can not guarantee the absence of implementation errors which may
have affected our evaluation.

7 Related Work

Software repository mining literature [11, 21, 22] frequently alludes to the
notion that learning from a too short, or an overly long history harms the
outcome, either because not enough knowledge can be uncovered, or because
outdated information introduces noise. However, except for some smaller
experiments by Zimmermann [11], the impact of these effects has not been
systematically investigated.

Similarly, authors in the field of association rule mining have stated the

185

Paper D.

need to investigate sensitivity to algorithm parameters (e.g., transaction filter
size used, choice of interestingness measure) [30-33], but we have not found
work that discusses sensitivity to the number of transactions used for mining
(i.e., our history length), or to aging of transactions.

Parameters in Mining Change Impact: In the context of software change
impact analysis, several studies remark on the importance of discarding from
the history large change sets which are likely to contain unrelated artifacts.
For example, Kagdi et al. [24], Zimmermann et al. [11] and Ying et al. [12]
propose to filter out transactions larger than 10, 30, and 100 items, respec-
tively. However, none of this work reports how the threshold was chosen nor
does it discuss the impact of different values on recommendation quality. In
previous work [25], we systematically explored the effect of filtering size on
the quality of change impact analysis, and found that filtering transactions
larger than eight items yields the best result for similar systems as considered
in this paper.

Characteristics of the Change History: Over the years, several studies pro-
posed strategies to group transactions in the revision history of software
projects [11, 13, 34]. The reason for doing so is that a developer might ac-
cidentally commit an incomplete transaction, and modify the remaining files
related to the same change in a subsequent transaction. As a consequence, a
single change set might be scattered across several transactions in the change
history. Nevertheless, in modern version control systems, transactions are
stashed in the user local repository and finalized at a later stage, reducing
the risk of committing incomplete transactions.

In contrast, whether properties such as average commit size and fre-
quency affect the quality of software recommendations is a relatively less
studied subject. In this direction, German carried out an empirical study on
several open source projects, finding that the revision history of most sys-
tems contains mostly small commits [35]. Alali et al. also investigated the
total number of lines modified in the files, and the total number of hunks
with line changes [36]. Kolassa et al. performed a similar study on commit
frequency, reporting an average inter-commit time around three days [37].
However, none of these studies investigates how characteristics of the change
history affect the quality of change recommendations.

Characteristics of the Change Set: Targeted association rule mining ap-
proaches drive the generation of rules by a query supplied by the user [20]. In
general, characteristics of the query can effect the precision of recommenda-
tions. For example, Rolfsnes et al. found a particular class of queries, strongly
related to query size, for which the most common targeted association rule
mining approaches cannot generate recommendations [10]. In other work,
Hassan and Holt investigated the effectiveness of evolutionary coupling in
predicting change propagation effects resulting from source code changes,
but did not evaluate whether the size of transactions in the history affects the

186

8. Concluding Remarks

quality of the predictions generated [7].

Aged histories in evaluation: For the purpose of evaluating change impact
analysis or change recommendation techniques, it is common practice to split
the change history into training and test sets. The training set can either be
treated as a static prediction model [12], or be continuously updated with
respect to the chosen transaction from the test set [11]. If treated as a static
model this means that the model will be aged differently with respect to each
transactions in the test set, and as we have seen in RQ2 aging affects impact
analysis quality. Therefore, any study involving history splitting should take
aging into consideration. Since we have seen that aging can only lead to
deterioration of impact analysis quality, we suggest evaluation setups where
the prediction model is updated for every transaction in the test set (i.e., an
age of zero).

8 Concluding Remarks

This paper presents a systematic study of the effects of history length and age
on 19 different software systems. Key findings include that as history length
increases, the MAP value also increases, although this increase diminishes
at around 15000 commits. Moreover, the applicability also increases with
increased history length, but seems to top out around 25000 commits. We
found that the impact of age on the MAP value is very significant, as even
very little aging yields a strong, basically exponential decrease.

Even in our longest studies of up to 540000 commits, we found no ev-
idence for the commonly held belief that there is an upper-bound to the
history that can be used for mining evolutionary coupling before outdated
knowledge starts to negatively affect the recommendation quality.

In addition to these studies, to provide a better understanding of the im-
pact of history length and age on the quality of change impact analysis, we
also derive a prediction model for the length of the history that should be
used with a given system. This prediction model is a function of system
demographics, specifically the average number of artifacts in a commit, the
median inter-commit time, and the number of unique artifacts in the history.
We found no corresponding prediction model for system age, which likely
reinforces the rapid detrimental effects of aging.

Finally, we found that the mining algorithms are stable with respect to
the effects of choosing a particular history length and history age on the
impact analysis quality throughout the evolution history. This means that
for a system that has matured beyond its chaotic youth, an optimal history
length can be computed once (using our prediction model) and subsequently
need not to be updated as the system matures further.

187

References

8.1 Future Work

Looking forward, an interesting avenue of investigation would be to assess
the impact of rule aggregation [26] on change impact analysis quality. This
analysis was not considered for the current paper to maintain conceptual
integrity, and avoid the inclusion of too many orthogonal topics.

Moreover, based on our findings related to the impact of very recent trans-
actions and history age on change impact analysis quality, it would be inter-
esting to experiment with (a) an alternative targeted association rule mining
algorithm that does not consider a fixed history length but instead uses an
adaptive approach, growing the history until (a number of) applicable trans-
actions are found, and (b) alternative strategies for association rules gener-
ation that take age into account, for instance by assigning higher weight to
more recent transactions.

Finally, it would be interesting to analyze how aspects of the development
process affect the evolutionary coupling and change impacts that are mined
from historical co-change data. For example, should transactions from all
contributors to a project be considered equally, or would it be beneficial to
give higher weight to transactions from core team members. Another aspect
to investigate is the relation between the velocity of a development project,
or even the typical time between commits, and good values for history size
and age.

Acknowledgement: This work is supported by the Research Council of
Norway through the EvolvelT project 3 and the Certus SFI #. Dr. Binkley was
supported by NSF grant IIA-1360707 and a J. William Fulbright award.

References

[1] S. Bohner and R. Arnold, Software Change Impact Analysis. CA, USA:
IEEE, 1996.

[2]]J. Law and G. Rothermel, “Whole Program Path-Based Dynamic Impact
Analysis,” in International Conference on Software Engineering (ICSE).
IEEE, 2003, pp. 308-318. [Online]. Available: http://dl.acm.org/citation.
cfm?id=776816.776854

[3] X. Ren, E Shah, E Tip, B. G. Ryder, and O. Chesley, “Chianti:
a tool for change impact analysis of java programs,” in ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2004, pp. 432-448. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1035292.1029012

3#221751/F20
4#203461,/030

188

[4]

[6]

[10]

[11]

References

M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more
efficient static software change impact analysis method,” in ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE). ACM, 2008, pp. 84-90. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1512475.1512493

A. R. Yazdanshenas and L. Moonen, “Crossing the bound-
aries while analyzing heterogeneous component-based software
systems,” in IEEE International Conference on Software Main-
tenance (ICSM). 1EEE, 2011, pp. 193-202. [Online]. Avail-
able: http://dx.doi.org/10.1109/ICSM.2011.6080786http:/ /ieeexplore.
ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=6080786

A. Podgurski and L. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 965-979,
1990. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=58784

A. E. Hassan and R. Holt, “Predicting change propagation in
software systems,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 2004, pp. 284-293. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1357812

G. Canfora and L. Cerulo, “Impact Analysis by Mining Software
and Change Request Repositories,” in International Software Metrics
Symposium (METRICS). 1EEE, 2005, pp. 29-37. [Online]. Available:
http:/ /ieeexplore.ieee.org/articleDetails.jsp?arnumber=1509307http:

/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1509307

M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact
analysis of change requests on source code based on inter-
action and commit histories,” in International Working Confer-
ence on Mining Software Repositories (MSR), 2014, pp. 162-171.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2597096http:
//dx.doi.org/10.1145/2597073.2597096

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the Analysis of Evolutionary Coupling for Software
Change Impact Analysis,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, mar 2016,
pp- 201-212. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapperhtm?arnumber=7476643

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software

189

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

References

Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1463228

A. T. T. Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.
htm?arnumber=1324645

H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-files
from version histories,” in International Workshop on Mining Software
Repositories (MSR). ACM, 2006, pp. 47-53. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=1137983.1137996

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=170035.170072

L. Moonen, S. Di Alesio, T. Rolfsnes, and D. W. Binkley, “Exploring the
Effects of History Length and Age on Mining Software Change Impact,”
in IEEE International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), sep 2016, pp. 207-216.

S. Eick, T. L. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,”
IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12,
2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=895984

M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk, “An adaptive
approach to impact analysis from change requests to source code,”
in IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, nov 2011, pp. 540-543. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=6100120

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on
Fine-Grained Change Information,” in Working Conference on Reverse
Engineering (WCRE). 1EEE, 2008, pp. 42—46. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapperhtm?arnumber=4656392

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 1998, pp. 190-198. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=738508

190

References

[20] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

[21] T. L. Graves, A. Karr, J. Marron, and H. P. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on Software
Engineering, vol. 26, no. 7, pp. 653-661, jul 2000. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=859533

[22] A. E. Hassan, “The road ahead for Mining Software Reposito-
ries,” in Frontiers of Software Maintenance. 1EEE, 2008, pp. 48-57.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4659248

[23] A. Alali, “An Empirical Characterization of Commits in Software Repos-
itories,” Ms.c, Kent State University, 2008.

[24] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 933-969, oct 2013. [Online].
Available: http:/ /link.springer.com/10.1007 /s10664-012-9233-9

[25] L. Moonen, S. Di Alesio, D. W. Binkley, and T. Rolfsnes, “Practical Guide-
lines for Change Recommendation using Association Rule Mining,” in
International Conference on Automated Software Engineering (ASE). Singa-
pore: IEEE, sep 2016.

[26] T. Rolfsnes, L. Moonen, S. Di Alesio, R. Behjati, and D. W. Binkley,
“Improving change recommendation using aggregated association
rules,” in International Conference on Mining Software Repositories (MSR).
ACM, 2016, pp. 73-84. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2901739.2901756

[27] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval. ACM,
1999.

[28] D. Schuirmann, “On hypothesis testing to determine if the mean of a
normal distribution is contained in a known interval.” Biometrics, 1981.

[29] W. Westlake, “Response to T.B.L. Kirkwood: bioequivalence testing - a
need to rethink,” Biometrics, vol. 37, pp. 589-594, 1981.

[30] Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of
association rule algorithms,” in SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 2001, pp. 401-406.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=502512.
502572

191

[31]

[32]

[33]

[34]

[35]

[36]

[37]

References

W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient Adaptive-Support
Association Rule Mining for Recommender Systems,” Data Mining and
Knowledge Discovery, vol. 6, no. 1, pp. 83-105, 2002. [Online]. Available:
http:/ /link.springer.com/10.1023/ A:1013284820704

N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” ACM SIGMOD Record, vol. 35, no. 1, pp. 14-19, mar 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1121995.
1121998

O. Maimon and L. Rokach, Data Mining and Knowledge Discovery
Handbook, O. Maimon and L. Rokach, Eds. Springer, 2010.
[Online]. Awvailable: http:/ /books.google.com /books?hl=en{&}lr=
{&}id=S-XVEQWABeUC{&}oi=fnd{&}pg=PR21{&}dq=Data+Mining+
and+knowledge+discovery+handbook{&}ots=LBVkfoBx65{&}sig=
u6c1n2kopRhLrbpgbMOFhvYhFgk{%}5Cnhttp:/ /www.springerlink.
com/index/10.1007 /978-0-387-09823-4http:/ /link.springer.com /1

E Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Detecting
asynchrony and dephase change patterns by mining software
repositories,” Journal of Software: Evolution and Process, vol. 26, no. 1, pp.
77-106, jan 2014. [Online]. Available: http://onlinelibrary.wiley.com/
doi/10.1002/smr.504 / fullhttp: / /doi.wiley.com/10.1002 /smr.1635

D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Software Engineering, vol. 11, no. 3, pp. 369-393, 2006.

A. Alali, H. Kagdi, and J. I. Maletic, “What’s a Typical Commit? A
Characterization of Open Source Software Repositories,” in International
Conference on Program Comprehension (ICPC). 1EEE, 2008, pp. 182-191.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4556130

C. Kolassa, D. Riehle, and M. A. Salim, “The empirical commit frequency
distribution of open source projects,” in International Symposium on
Open Collaboration (WikiSym). ACM, 2013, pp. 1-8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491055.2491073

192

Paper E

Predicting Relevance of Change Recommendations

Thomas Rolfsnes, Leon Moonen and Dave W. Binkley

Accepted for publication in the main research track of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
October 30 - November 3, 2017.

(© 2017 IEEE
The layout has been revised.

1. Introduction

Abstract

Software change recommendation seeks to suggest artifacts (e.g., files or methods)
that are related to changes made by a developer, and thus identifies possible omissions
or next steps. While one obvious challenge for recommender systems is to produce
accurate recommendations, a complimentary challenge is assessing the relevance
of a recommendation. We address this complimentary challenge for recommendation
systems based on evolutionary coupling. Such systems use targeted association-
rule mining to identify relevant patterns in a software system’s change history.
Traditionally, this process involves ranking artifacts using interestingness mea-
sures such as confidence and support. However, these measures often fall short
when used to assess recommendation relevance.

We propose the use of random forest classification models to assess recommen-
dation relevance. This approach improves on past use of various interestingness
measures by learning from previous change recommendations. We empirically eval-
uate our approach on fourteen open source systems and two systems from our in-
dustry partners. Furthermore, we consider two complementing mining algorithms:
Co-CHANGE and TARMAQ. The results find that random forest classification signifi-
cantly outperforms previous approaches, receives lower Brier scores, and has superior
trade-off between precision and recall. The results are consistent across software
system and mining algorithm.

1 Introduction

When software systems evolve, the interactions between source code enti-
ties grow in number and complexity. As a result, it becomes increasingly
challenging for developers to foresee and reason about the overall effect of
a change to the system. One proposed solution, change impact analysis [1],
aims to identify software artifacts (e.g., files, methods, classes) affected by a
given set of changes. The impacted artifacts form the basis for change recom-
mendation, which suggests to an engineer artifacts potentially missed while
implementing a change to the code.

One promising approach to change recommendation aims to identify
potentially relevant items based on evolutionary (or logical) coupling. This
approach can be based on a range of granularities of co-change informa-
tion [2—-4] as well as code-churn [5] or even interactions with an IDE [6].
Change recommendation based on evolutionary coupling has the intriguing
property that it effectively taps into the inherent knowledge that software
developers have regarding dependencies between the artifacts of a system.
Our present work considers co-change information extracted from a version
control system such as Git, SVN, or Mercurial.

One challenge faced by all recommender systems are false positives. This

195

Paper E.

challenge becomes acute if developers come to believe that automated tools
are “mostly wrong” [7]. Cleary algorithms with higher accuracy will help
address this challenge. However, we can also address this challenge with
algorithms that assess the relevance of a proposed recommendation. In fact
the two approaches are complimentary. In this paper we hypothesize that
history aware relevance prediction that exploits earlier change recommenda-
tions to assess the relevance of a current recommendation can help mitigate
the challenge of false positives.

Our approach consists of training a random forest classification model [8] on
previous change recommendations with known relevance. The model can then
be used to give a single likelihood estimate of the relevance of future change rec-
ommendations. Automatic assessment of recommendation relevance, frees
developers from having to perform the potentially time-consuming task. Our
work therefore facilitates tooling which can automate the change recommen-
dation process, only notifying the developer when relevant recommenda-
tions are available. Furthermore, our approach compliments existing research
work on improving mining algorithm accuracy as it can be used regardless
of the mining algorithm used to generate a recommendation.
Contributions: (a) We present twelve features describing aspects of change
sets, change histories, and generated change recommendations. These features
are used to build a random forest classification model for recommendation
relevance. (b) We assess our model in a large empirical study encompassing
sixteen software systems, including two from our industry partners Cisco and
Kongsberg Maritime. Furthermore, change recommendations are generated
using both Co-CHANGE and TARMAQ to assess the external validity of our
approach. (c) We evaluate the importance of each of the twelve features used
in our relevance classification model.

2 Overall Approach

The overarching goal of this paper is to attach appropriate relevance scores to
change recommendations based on association rule mining. We consider this
question of relevance from a developer viewpoint, where “relevant” means
“useful for the developer”. We therefore consider a change recommendation
relevant if it contains a correct artifact as one of its top ten highest ranked
artifacts.

We propose an approach that uses classification based on random forests [8] to
learn from previous change recommendations in order to assess the current
one. Thus, the relevance of a current change recommendation is evaluated
based on the known relevance of historically similar and dissimilar recommen-
dations.

Traditionally, the same interestingness measure used to rank the artifacts

196

3. Related Work

of a recommendation are also used to assess its relevance [9-11]. For ex-
ample, an interestingness measure might weight artifacts on a range from 0
to 1, enabling an internal ranking. Given the ranking it is then up to the
user to assess whether the recommendation is relevant. Naturally, if the top
ranked artifacts have received weights close to the maximum (1 in this exam-
ple), the recommendation is assumed relevant and will likely be acted upon.
Recent work found that, in the context of software change recommendation,
Agrawal’s confidence interestingness measure [12] performs among the top-
in-class when compared to more complex measures [13]. Considering this
result, we use confidence as a baseline and set out to compare the relevance
predictions given by our proposed approach against those based on confi-
dence:

RQ 1. Does classification based on random forests improve upon the use of confi-
dence as a relevance classifier?

To train our classification model, a range of features must be introduced that
describe attributes related to a change recommendation. The better these fea-
tures capture key attributes the better we can learn from previous recommen-
dations and consequently the better we can assess the relevance of a current
recommendation. Thus our second research question is

RQ 2. What are the most important features for classifying change recommendation
relevance?

In our study we use random forests for their proven performance [14] and
intrinsic ability to assess variable (feature) importance [8]. By answering our
two research questions we seek to uncover whether change recommendation
relevance is a viable venue for further research. If so, our approach may prove
to be an important compliment to existing algorithms for change recommen-
dation. As both improve, we gain both better recommendations alongside
higher confidence in those recommendations.

3 Related Work

Recommendation Relevance: A shared goal in recommendation systems is
uncovering interesting findings in a dataset, which means that an important
research question concerns what actually characterizes the interestingness of
a finding. Over the years, numerous measures for interestingness have been
proposed [9-11, 15, 16]. A recent evaluation of 39 of these measures in the
context of software change recommendation found that the traditional mea-
sures of confidence and support perform just as well as more recent and often
more complex measures [13].

197

Paper E.

Cheetham and Price evaluated indicators (features) that can be used to
provide confidence scores for case based reasoning systems [17, 18]. To pro-
vide a recommendation for a new case, the k-nearest neighbor algorithm was
used, thus the evaluated features were tightly woven with the kind of output
that the k-nearest neighbor algorithm produces. Example features include
the “Number of cases retrieved with best solution” and “Similarity of most
similar case.” The features were tested for importance using leave-one-out
testing in combination with the decision tree algorithm C4.5. In comparison,
our use of random forests avoids the need for leave out testing of features as
feature importance is internally accounted for.

Le et al. proposed an approach for predicting whether the output of a bug

localization tool is relevant [19, 20]. As for this paper, an output is considered
relevant if a true positive is part of the top 10 recommended artifacts. While
change recommendation can be seen as stopping faults before they happen, bug
localization is a complementary approach for already existing faults. State of
the art bug localization is based on comparing normal and faulty execution
traces (spectrum based). In order to predict relevance, Le et al. identified
50 features related primarily to traces, but also considered the weights of
recommended (suspicious) artifacts. These features were then used to train a
classification model for relevance based on SVM.
Rule aggregation, clustering, and filtering: Rolfsnes et al. propose aggrega-
tion of association rules to combine their evidence (or interestingness) [21].
Aggregation likely increases recommendation relevance: for example, con-
sider three rules, one recommending A with confidence 0.8 and two recom-
mending B with confidence 0.7 and 0.6 respectively. Traditional approaches
would use the highest ranking rule and thus prioritize A over B. Rule aggre-
gation enables combining the evidence for B and thus leads to recommending
B over A.

Several authors propose methods to discover the most informative rules

in a large collection of mined association rules, by either clustering rules
that convey redundant information [22-24], or by pruning non-interesting
rules [25, 26]. The overall idea is that the removal of rules will reduce the
noise in the recommendations made using the remaining rules. However, in
contrast to the work by Rolfsnes et al. and the approach proposed in this
paper, recommendations will be based on only part of the available evidence.
It remains to be seen if this affects relevance.
Parameter tuning: Recent research highlighted that the configuration pa-
rameters of data mining algorithms have a significant impact on the quality
of their results [27]. In the context of association rule mining, several authors
have highlighted the need for thoughtfully studying the impact of parameter
settings on the quality of the generated rules [28-30].

Moonen et al. investigated how the quality of software change recom-
mendation varied depending on association rule mining parameters such as

198

4. Generating Change Recommendations

transaction filtering threshold, history length, and history age [13, 31]. In
contrast to that work, which focused on configurable parameters of the algo-
rithm, this paper considers non-configurable features of the query, the change
history, and the recommendation history.

4 Generating Change Recommendations

4.1 Software Change Recommendation

Recommender (or recommendation) engines are information filtering sys-
tems whose goal is to predict relevant items for a specific purpose [32]. A
common use of recommender systems is in marketing where these systems
typically leverage a shopper’s previous purchases and the purchases of other
shoppers to predict items of potential interest to the shopper.

In the context of software engineering, these systems typically leverage a
developer’s previous changes together with the changes made by other de-
velopers to predict items of interest. Software change recommendation takes as
input a set of changed entities, referred to as a change set or query, and pre-
dicts a set of entities that are also likely in need of change. These entities may
be any software artifact, such as files, methods, models, or text documents.
The study described in this paper considers both files and methods as poten-
tial artifacts. We extract these artifacts from the version control history of a
software system. Thus, software recommendation helps answering questions
such as “Given that files f; and f, and method m changed, what other files and
methods are likely to need to be changed?”

A common strategy for change recommendation is to capture the evolu-
tionary coupling between entities [2]. In this application, entities are consid-
ered coupled iff they have changed together in the past. The key assumption
behind evolutionary coupling is that the more frequently two or more enti-
ties change together, the more likely it is that when one changes, the others
will also have to be changed. In the context of software change recommen-
dation, evolutionary coupling is commonly captured using association rule
mining [33].

4.2 Targeted Association Rule Mining

Association rule mining is an unsupervised learning technique aimed at find-
ing patterns among items in a data set [12]. Association rule mining was first
applied for market basket analysis, to find patterns (rules) describing items
people typically purchase together. In this context, the data set is expressed
as a list of transactions, where each transaction consists of a set of items. For
example, in the domain of grocery stores, items likely include products such
as “milk” and “cookies”, and mining a rule such as “cookies” — “milk”,

199

Paper E.

uncovers the tendency of people who buy cookies (the rule antecedent) to
also buy milk (the rule consequent). This provides valuable knowledge, for
example suggesting that placing these grocery items in close proximity will
increase sales.

Shortly after the introduction of association rule mining, Srikant et al.
acknowledged that for most applications only a few specific rules are of
practical value [34]. This led to the development of constraint-based rule min-
ing where only rules that satisfy a given constraint are mined. Typically,
constraints specify that particular items must be involved in the rule’s an-
tecedent. For example, consider a software engineer who recently made a
change to file x. A constraint could specify that rule antecedents must con-
tain x, thus limiting recommendation to those involving x. Constraints are
usually specified by the user in the form of a query, at which the mining
process is said to be targeted. The resulting Targeted Association Rule Mining
Algorithms filter from the history all transactions unrelated to the query, pro-
ducing a more focused set of rules. Doing so provides a significant reduction
in execution time [34].

To rank the resulting rules, numerous interestingness measures have been
proposed [11, 15]. Such measure attempt to quantify the likelihood that a
rule will prove useful. The first interestingness measures introduced, fre-
quency, support, and confidence, are also the most commonly used [12]. It is
worth formalizing these three. Each is defined in terms of a history, ‘H, of
transactions and an association rule A — B, where A and B are disjoint sets
of items. To begin with rule frequency is the number of times the antecedent
and consequent have changed together in the history:

Definition 1 (Frequency).
frequency(A — B) Z |{T € H: AUB C T}|

Second, the support of a rule is its relative frequency with respect to the
total number of transactions in the history:

Definition 2 (Support).

support(A — B) = frequenc‘z_iz“l — B)

Finally, confidence is its relative frequency of the rule with respect to the
number of historical transactions containing the antecedent A:

Definition 3 (Confidence).

w frequency(A — B)
- H{TeH:ACTY

confidence(A — B)

200

4. Generating Change Recommendations

Support and confidence are often combined in the support-confidence frame-
work [12], which first discards rules below a given support threshold and then
ranks the remaining rules based on confidence. Thresholds were originally
required to minimize the number of potential rules, which can quickly grow
unwieldy. However, the constraints introduced by targeted association rule
mining greatly reduce the number of rules and thus do not depend on a
support threshold for practical feasibility.

4.3 Association Rule Mining Algorithms

A targeted association rule mining algorithm takes as input a query Q and
restricts the antecedents of the generated rules to be various subsets of Q.
The variation here comes from each algorithm attempting to best capture
relevant rules. Consider, for example, the query Q = {a,b,c,d}. Potential
rules include 2 — X and b,c — Y. In fact, the set of possible antecedents is
given by the powerset of Q.

One of most well known algorithms, Rosg, limits the number of rules
by requiring that the antecedents are equal to the query, Q [33]. Thus for
{a,b,c,d}, Rosk rules are all of the form a,b,¢,d — X, where X is only rec-
ommended if there exists one or more transactions where X changed together
with all the items of the query. At the other end of the spectrum, Co-CHANGE
partitions Q into singletons and considers only rules for each respective sin-
gleton [35]. Thus it produces rules of the form a — x and b — x.

While Rose and Co-CHANGE makes use of the largest and smallest pos-
sible rule antecedents, TARMAQ identifies the largest subset of Q that has
changed with something else in the past [36]. Thus TARMAQ may return the
same rules as Co-CHANGE (when the history is made up of only two-item
transactions) or the same rules as Rose (when Q is a proper subset of at least
one transactions). However, TARMAQ is also able to exploit partial evidence
(e.g., when the history includes transactions larger than two, but none that
RoOsE can make use of).

While it may not be immediately evident, TARMAQ is defined such that its
recommendations are identical to those of RosE, when RosE is able to produce
a recommendation. On the other hand, TARMAQ can produce recommenda-
tions far more often than Rosk [36]. As a result, we performed our empirical
study using Co-CHANGE and TARMAQ, as the behaviour of ROsE is subsumed
by that of TARMAQ. As Co-CHANGE mines only singleton rules and TARMAQ
potentially mines rules which maximize the antecedent with respect to the
query, they together cover a large range of possible recommendations.

201

Paper E.

5 Overview of Model Features

This section introduces the features that we use to build our random forest
classification model. We consider three categories of features:

o features of the query,
o features of the change history
e features of the recommendation.

It is worth noting that the features describing the query are known a pri-
ori, while features of the change history and the change recommendation
are only known after a recommendation has been generated. Fortunately,
a change recommendations can be generated in mere milliseconds and the
corresponding feature set can therefore be included without incurring undo
computational expense.

5.1 Features of the Query

Query Size: The first feature of a query we consider is simply its size. For
example, if a single method is changed the query size is 1, if two different
methods are changed, the query size is 2 and so on. Furthermore, some files
may not be able to be parsed for fine-grained change information, changes
to these files only ever increase the query size by 1 in total. Throughout the
rest of the paper we use the term artifact as a generic way of referring to both
(unparsable) files and (parsable) methods. We hypothesize that query size may
be important for relevance as when it increases one of the following is likely
occurring: (a) The developer is working on a complex feature, requiring code
updates in several locations. Here increased query size indicates specificity.
(b) On the other hand, if a developer is not compartmentalizing the work and
thus is working on multiple features at the same time, increased query size
indicates chaos as unrelated artifacts are added to the same commit.
Number of artifacts added: If a new file or new method is added, we know
that nothing has changed together with it previously, thus from an evolu-
tionary perspective, the new artifact is uncoupled from all other artifacts. The
presence of new artifacts in combination with known artifacts adds uncer-
tainty and is therefore considered as a feature.

Number of methods/files changed: We record the granularity of changes
in two separate features: the number of methods changed and the number
of files changed. For example, if the methods m1 and m2 change in the file
f1, and the method m3 change in the file f2, we record that 3 methods and 2
files have changed. By including these metrics of query granularity we hope
to capture the specificity of the corresponding change recommendation.

202

5. Overview of Model Features

5.2 Features of the Change History

Whenever an existing artifact, a, is changed, a list of relevant transactions can
be extracted from the change history. A transaction is relevant if it con-
tains the changed artifact. From these transactions mining algorithms iden-
tify other artifacts that typically changed with 4, forming the basis for the
resulting change recommendation.

Number of relevant transactions: The number of relevant transactions is the
number of transactions with at least one artifact from the query. This metrics
provides a measure of the churn rate (i.e., how often the artifacts change).
Mean size of relevant transactions: While the number of relevant trans-
actions tells us how often the artifacts found in a query change, it does not
tell us how often they change with other artifacts, the mean size of relevant
transactions attempts to capture this feature.

Mean/median age of relevant transactions: Two age related features in-
cluded involve the change in dependencies between artifacts as software
evolves (e.g., because of a refactoring) and code decay, where artifacts become
“harder to change” (a known phenomena in long lived software systems [37]).
The feature “age of relevant transactions” attempts to capture these two age
related aspects. Note that two features are actually used: the mean age and
the median age.

Overlap of query and relevant transactions: If there are transactions that
exhibit large overlap with the query, this might indicate highly relevant trans-
actions [33]. We capture this through the “overlap percentage”. Note that the
percentage reports the single largest match rather than the mean.

5.3 Features of the Recommendation

A recommendation boils down to a prioritized list of association rules giving
the potentially affected artifacts. However, different mining algorithms may
return different lists. While the features described so far are independent of
the mining algorithm, in this section we consider features that are aspects of
the recommendation and thus the particular algorithm used.

The Confidence and Support of Association Rules: A recommendation
is constructed from association rules of the form A — B. Here “A” includes
changed artifacts while “B” the recommended artifacts. To be able to distin-
guish rules, weights can be provided through interestingness measures. One
way of providing these weights uses the support and confidence interesting-
ness measures (Definitions 2 and 3). Traditionally, interestingness measures
are used in isolation to judge whether a recommendation is relevant [33, 36,
38]. In this paper we extend their use by considering aggregates of the top
10 rules in order to indicate recommendation relevance. We include three ag-
gregates: The top 10 mean confidence, the top 10 mean support and the maximum

203

Paper E.

confidence. Each feature is meant to capture the likelihood of whether there
exist at least one relevant artifact in the top ten.

Number of Association Rules: If a recommendation consists of a large
number of rules, two non-mutually exclusive situations may exist: (a) the
query is large and the contained artifacts have changed with something else
in the past, or (b) at least one artifact of the query has changed with a large
number of other artifacts in the past. In either case, a large recommendation
is a symptom of non-specificity and may thus prove a valuable feature for
classifying true negatives.

6 Experiment Design

Our empirical study is designed to answer one primary question: can we
predict if a recommendation contains relevant artifacts? To answer this question
we generate a large recommendation oracle, over which we train random forest
classification models using the features described in section 5. Finally, we
evaluate the resulting models by comparing their performance against two
confidence based predictions of relevance. These aim to function as a baseline
for whether a developer would act upon a given recommendation.

1. Maximum Confidence: a recommendation is predicted as relevant if
the confidence of the artifact with the highest confidence is larger than
a given threshold.

2. Mean Confidence 10: a recommendation is predicted as relevant if the
mean confidence of the top ten artifacts is greater than a given thresh-
old.

The rationale behind maximum confidence mimics a developer who is only
willing to consider a recommendation’s highest ranked artifact, while that of
mean confidence 10 mimics a developer who is willing to consider the recom-
mendation’s top ten artifacts.

Our study encompasses change recommendations generated from the
change history of sixteen different software systems with varying charac-
teristics. Two of these systems come from our industry partners, Cisco and
Kongsberg Maritime. Cisco is a worldwide leader in the production of network-
ing equipment, We analyze the software product line for professional video
conferencing systems developed by Cisco. Kongsberg Maritime is a leader in
the production of systems for positioning, surveying, navigation, and au-
tomation of merchant vessels and offshore installations. We analyze the com-
mon software platform Kongsberg Maritime uses across various systems in the
maritime and energy domain.

The other fourteen systems are the well known open-source projects re-
ported in Table E.1 along with change history statistics illustrating their di-

204

6. Experiment Design

versity. The table shows that the systems vary from medium to large size,
with over 280000 unique files in the largest system. For each system, we
extracted up to the 50000 most recent transactions. This number of trans-
actions covers vastly different time spans across the systems, ranging from
almost twenty years in the case of HITPD, to a little over ten months in the
case of the Linux kernel. In the table, we report the number of unique files
changed throughout the 50000 most recent transactions, as well as the the
number of unique artifacts changed. These artifacts include, in addition to
file-level changes, method-level changes for certain languages.! Finally, the
last column of Table E.1 shows the programming languages used in each
system, as an indication of heterogeneity.

The remainder of this section first explains the setup used to generate
change recommendations using Co-CHANGE and TARMAQ. It then details
how these recommendations are used to train and evaluate models for rele-
vance prediction. The results of our study are presented in section 7.

6.1 Generating Change Recommendations

Creating gold standards

The change history of a software system exactly describes, transaction by
transaction, how to (re)construct the current state of the system. Conse-
quently, we can assume the majority of the time each transaction has some
intention behind it, and thus that the changes have some meaningful relation
to each other. In fact, if this assumption is completely misguided, recommen-
dations based on change histories would degenerate to random prediction,
which is clearly not the case.?2 Thus, given a subset Q of transaction C, a
good recommendation algorithm should identify the complement E = C/Q
as the set of impacted items. Here E captures the ground truth on whether
a change recommendation is truly relevant because it includes those artifacts
that actually changed alongside Q. For this reason, E is used when evaluating
the change recommendation generated for query Q.

Sampling strategy

Construction of the change scenarios involves two steps:
e sampling transactions

e generating queries from each sampled transaction.

1 We currently extract method-level change information from files of C, C++, C#, and Java
code.

2 The chance of randomly predicting a correct method is 1/ (number of methods), which for
any sizable system approaches zero.

205

Paper E.

Table E.1: Characteristics of the evaluated software systems (based on our extraction of the last
50000 transactions for each of he systems).

Software System History Unique Unique Avg. # artifacts

(in yrs) # files # artifacts in commit
CPython 12.05 7725 30090 4.52
Mozilla Gecko 1.08 86650 231850 12.28
Git 11.02 3753 17716 3.13
Apache Hadoop 6.91 24607 272902 47.79
HTTPD 19.78 10019 29216 6.99
Liferay Portal 0.87 144792 767955 29.9
Linux Kernel 0.77 26412 161022 5.5
MySQL 10.68 42589 136925 10.66
PHP 10.82 21295 53510 6.74
Ruby on Rails 11.42 10631 10631 2.56
RavenDB 8.59 29245 47403 8.27
Subversion 14.03 6559 46136 6.36
WebKit 3.33 281898 397850 18.12
Wine 6.6 8234 126177 6.68
Cisco Norway 2.43 64974 251321 13.62
Kongsberg Maritime 15.97 35111 35111 5.08

Software System

Languages used*

CPython Python (53%), C (36%), 16 other (11%)

Mozilla Gecko C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop Java (65%), XML (31%), 10 other (4%)

HTTPD XML (56%), C (32%), Forth (8%), 19 other (4%)
Liferay Portal Java (71%), XML (23%), 12 other (4%)

Linux Kernel C (94%), 16 other (6%)

MySQL C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP C (59%), PHP (13%), XML (8%), 24 other (20%)

Ruby on Rails Ruby (98%), 6 other (2%)

RavenDB C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit HTML (29%), JavaScript (30%), C++ (26%), 23 other (15%)
Wine C (97%), 16 other (3%)

Cisco Norway
Kongsberg Maritime

C++, C, C#, Python, Java, XML, other build/config
C++, C, XML, other build/config

* languages used by open source systems are from http://www.openhub.net,
percentages for the industrial systems are not disclosed.

206

6. Experiment Design

We start by fetching the 50000 most recent transactions from each subject
system. From these, we then determine the 10000 most recent transactions
whose size is between 2 and 300. The minimum number, 2, ensures that there
is always a potential impact set for any given query, while the maximum
number, 300, covers at least 99% of all transactions while aiming to omit
large changes such as licencing changes. From each sampled transaction C,
the impact set E is randomly determined, but ensured to consist of at most
ten items.

Ranking Rules

The rules mined by each algorithm all share the property that their support is
at least one because we operate with an absolute minimal support constraint.
By including “all rules” like this, we ensure that both high frequency as well
as low frequency (rare) rules are included in the recommendations [39].

The support measure is not otherwise used for ranking. When support
is used for ranking, special care needs to be taken as rare (infrequent) rules
always rank lower then more frequent rules. This is a result of the downward
closure property: any subset of a rule must have equal or larger support
relative to the origin rule [40]. For example, given the two rules r; = {a} —
{x} and r, = {a,b} — {x}, r» cannot have higher support than ;.

By using the confidence measure to rank rules, both rare and non-rare
rules may be ranked highly. Still, the frequency of a pattern continues to
inform the relevancy of a rule. To this end, recall that the top 10 mean support
is included as a feature in our prediction model.

6.2 Evaluation of Relevance Prediction

Blocked cross validation

Last block validation is a frequently used scheme for evaluating prediction
models. Here the data is split into two blocks, with the first block being used
to train the model and the second block being used to evaluate it. This setup
has the advantage of respecting the temporal nature of the data. However, a
drawback is that not all data is used for both training and prediction [41]. To
address this a traditional cross-validation setup may be used. However, doing
so violates the temporal nature of time series data, and, in the worst case, may
invalidate the results [41]. Because in time series data future data naturally
depends on prior data, we use blocked cross validation to preserve the temporal
order between training and evaluation. In our configuration we partition each
set of transactions into ten equally sized blocks, preserving temporal order
between blocks. We then train nine random forest classification models for
each software-system and mining algorithm combination. As illustrated in

207

Paper E.

Temporal order of change recommendations
for one software-system + mining algorithm

(5155253355453558658753858958@

Train Predict

B1 B2

Cross-validation scheme: o5 B3
B1..B3 B4

B1.B9 B10

Fig. E.1: The blocked cross-validation scheme used in our study. Notice that all blocks except Bl
and B10 are used for both training and prediction

Figure E.1, each random forest is trained on an incrementally larger subset of
the available recommendations. In total, 16systems * 2a1gorithms * 9 forests = 288
random forests are trained.

Measuring Relevance

The random forest and confidence based classification models have probabilistic
interpretations. The confidence interestingness measure itself is given by the
conditional likelihood P(B|A), where B is the recommended artifact and A
is one or more artifacts that changed (i.e., artifacts from the query) [12]. The
maximum and mean confidence models use this information to capture the
likelihood that a developer will act upon a given change recommendation.
Here a “0” indicates very unlikely while a “1” indicates very likely. In the
case of random forests, the likelihood is the result of the votes obtained from
the collection of trees making up the random forest [8]. Each decision tree
casts a single vote. As each tree is built from a random selection of change
recommendations, the end likelihood is an indication of internal consistency
within the data set for a particular scenario. In other words, if a certain
scenario always results in a certain outcome, it is very likely that similar new
scenarios will have the same outcome. Finally, in the evaluation sets used
throughout our study we encode the possible classes in a similar way, the
binary options are either 0 (not correct in top 10) or 1 (correct in top 10).

7 Results and Discussion

We organize the discussion of our results around the two research questions
proposed in section 5. Throughout this section we will consider prediction
performance for each individual software system, and for each of the mining

208

7. Results and Discussion

—— Mean Conf. 10 ---- Max. Conf. == = Random Forest

0.6
0.5

0.4

abueyn-09H

0.3

0.2

MAE

0.6

0.5

0.4

OVINYVL

0.3

0.2

F PP RS R R
Evaluation Block

Fig. E.2: Descriptive view of errors using the MAE. Each line is a distinct software-system.

algorithms: Co-CHANGE and TArRMAQ. By doing so we get an indication of
how generalizable the results are to other systems and other algorithms. In
the following we briefly introduce each performance metric before presenting
the corresponding results.

7.1 RQ 1: Comparison to confidence as a relevance predictor

While comparing the three classification models, we focus on two aspects of
their relevance predictions:

1. the error with respect to the actual relevance, and
2. the performance across different classification thresholds.

We start with a descriptive view of the errors exhibited by each classification
model, for this we use the Mean Absolute Error (MAE). In our case, MAE
measures the mean absolute difference between the actual and predicted value
for whether there is a correct artifact in the top ten artifacts of a recommen-
dation. For example, given a certain feature set as input, the random forest

209

Paper E.

—— Mean Conf. 10 ---- Max. Conf. == = Random Forest

abueyn-09H

Brier

OVINYVL

F PP PSR R®

Evaluation Block

Fig. E.3: Accuracy of classification models using Brier scores. Each line is a distinct software-
system. Models below the horizontal black line tend to classify correctly with regards to a 0.5
classification threshold.

might give the output 0.67, indicating a 67% likelihood that the resulting rec-
ommendation will be relevant. If in actuality, we know that for this scenario
there is indeed a correct artifact in the top ten the prediction error would be
1 —0.67 = 0.33 as positives are encoded as “1”. Note that lower is better. In
Figure E.2 we have provided the MAE across software systems for the two
mining algorithms. For this first look at the data we have also preserved
results for each evaluation block. This enables a view into error fluctuations
across time. First, there is no apparent overall trend across the evaluation
blocks. This is good news as it provides evidence that the analysis is stable
across time. This is also supported by fitting linear regression lines (left out
to minimize clutter). The random forest model shows less variance in error
across systems and algorithms, while for some systems the maximum con-
fidence model exhibits less overall error. For the change recommendations
where the actual relevance was 1 (Correct in Top 10), the maximum confidence
model frequently matches the prediction exactly and therefore minimizes the
error for these recommendations.

210

7. Results and Discussion

In terms of accuracy of each classification model a proper scoring rule must
be used [42]. For proper scoring rules, the maximum score is achieved if the
prediction distribution exactly matches the actual distribution. One such scoring
rule is the brier score. In the case of binary classification, which is our task,
the brier score is the mean squared error:

1 N

BS =5 izl(Pi —a;)

Where p; is the predicted relevance for scenario i, and a; is the actual rel-
evance (1 or 0). Figure E.3 presents the Brier scores for each classification
model across each evaluation block, software system, and mining algorithm.
Note that lower is better. In the figure, the horizontal black line at y = 0.25 in-
dicates the brier score of a neutral classification model. A neutral model always
makes the prediction 0.5, where relevance and non-relevance are equally
likely. Brier scores below the line indicate a prediction model that tends to be
on the “right side of the midpoint”. We clearly see the random forest model
being consistently more accurate across algorithms and software systems.
While the error informs us about the overall fit of a prediction model, it
does not capture performance across different classification thresholds. When
classification models are used in practice, thresholds must be set to balance
true positives against false positives and false negatives. To investigate the
ability of our three prediction models in these terms, we consider the ROC
curve and the Precision/Recall curve. First, the ROC curve in Figure E.4
plots the True Positive Rate (PR = TPE—PFN) against the False Positive Rate

(FPR = Fpi%) at classification thresholds from 0 to 1. It is immediately
apparent that the confidence based models do not meaningfully respond to dif-
ferent classification thresholds, as data points are not evenly spread across the
x-axis. Furthermore, there are strong linear relationships between their TPRs
and FPRs. This was also reflected in corresponding Pearson correlation coef-
ficients, where all coefficients were calculated to be 0.97 or higher. Intuitively,
the effect we see is that as the classification threshold is lowered, the confi-
dence models for recommendation relevance classify comparably increased
amounts of recommendations both correctly and incorrectly. For example,
both TPR and FPR increase similarly. Furthermore, observe that the range
and domain of the TPR and FPR for the confidence models do not fully ex-
tend between 0 and 1. This is the result of a high percentage of change
scenarios being given the relevance “1”, and these scenarios being evenly
split between True Positives (TPs) and False Positives (FPs). In other words,
the lack of even distribution of data-points results in less variation in TPR
and FPR, which again is reflected in the range and domain. To further sup-
port our findings we compared the partial Area Under the Curve (pAUC)
between the ROC of the random forests and each of the confidence based

211

Paper E.

——— Mean Conf. 10 --=-- Max. Conf. ==+ Random Forest
1.00
0.75

0.50

abueyn-09

0.25

0.00

1.00

True Positive Rate

0.75

0.50

OVINYVL

0.25

0.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Fig. E.4: ROC curves for the prediction models trained for each software system and algorithm.

models. We used roc.test from the R package pROC, the significance test is
based on bootstrapped sampling of multiple AUCs and computing their dif-
ference. Across all software systems and for both Co-CHANGE and TARMAQ
the pAUC were significantly larger (p < 0.05) for the random forest model.
Thus, the random forest classifier consistently provide better estimates of rel-
evance across various thresholds compared to the purely confidence based
methods explored.

As laid out earlier, relevance prediction can be performed in a background
thread that only notifies the developer when there is a high likelihood for a
true positive recommendation. In this application, the positive class (correct
in top ten) is therefore of the most interest. Notifications that there are no
relevant artifacts would be of less use. With this view, the precision (TPT—EFP) of
the classification models become imperative. The task is to find an appropri-
ate classification threshold that makes true positives likely (high precision),
while still maintaining practicality in that recommendations can be regularly
made (high recall). Figure E.5 shows the precision/recall curves for our three
prediction models for each software system and mining algorithm. First,
the abnormality in slope, range and domain for the confidence models can
again be attributed to the weak connection to threshold-changes. Further-
more, while one usually expects a decrease in precision as recall increases,
this does not necessarily need to be the case. The trends for the confidence

212

7. Results and Discussion

——— Mean Conf. 10 --=-- Max. Conf. ==+ Random Forest

075 &
(@)
0
QO
=)
«Q
0.50 @
C
ie]
@
3
rI 1.00
0.75 =
X
z
>
[5)
0.50

0.00 0.25 0.50 0.75 1.00
Recall

Fig. E.5: Precision/Recall curves for the prediction models trained for each software system and
algorithm.

models in Figure E.5 are the result of having slightly higher concentrations of
positive classifications than negative classifications on lower thresholds. As
thresholds are lowered further, more recommendations become TPs, and the
ratio between TPs and FPs actually increases. An implication of this is that
at least for the confidence measure, its value cannot be used directly as an
indication of relevancy.

Turning to the random forest models, these exhibit greater defined be-
havior, where negative classifications are primarily located in lower likeli-
hood thresholds, thus precision decreases as recall increases. In terms of rec-
ommending concrete classification thresholds for our random forest model
we suggest that this should be adjusted with respect to the system domain
knowledge of the developer for which the recommendation is made. In Ta-
ble E.2 we have provided the mean precision and recall across software sys-
tems for the example thresholds at 0.5 and 0.9. As developers become more
acquainted with a system, they should also be able to better differentiate rel-
evant and non-relevant recommendations. As such, experienced developers
might afford a higher rate of recall at the cost of lower precision. A classifica-
tion threshold of 0.50 becomes reasonable for this group, assuming TARMAQ
is used. For inexperienced developers one wants to minimize confusion,
and therefore maximize the precision of change recommendations. Thus, a
threshold such as 0.9 might be appropriate for these developers, resulting in

213

Paper E.

Table E.2: Examples of Precision and Recall for the random forest classification model. The
Standard Deviation (SD) captures fluctuations between software systems.

Classification Threshold
0.5 0.9
Algorithm Mean SD Mean SD
Co-CHANGE Precision 0.7749 £ 0.0754 0.9710 =+ 0.0204
Recall ~ 0.6835 + 0.0458 0.1003 + 0.0735
TARMAQ Precision 0.8677 £ 0.0619 0.9929 + 0.0082
Recall ~ 0.7348 £ 0.0324 0.2771 + 0.1016

change recommendations only having false positives in about 1 to 3 per 100
recommendations.

7.2 RQ 2: Analysis of features

Having empirically established that the random forest classifications models
are superior at predicting change recommendation relevance, we next con-
sider which features bring the most value to the models. Breiman introduced
the concept of variable importance for random forests [8]. Once the decision
trees of the random forests have been built, the process can self-assess the
importance of each feature. The basic idea is to observe if randomly permut-
ing a feature changes prediction performance [8]. Averaging the accuracy
changes over all trees gives the mean decrease in accuracy (when permuted) for
each feature.

The corresponding plot for the features included in our model is provided
in Figure E.6. For two of the studied software systems (KM and Rails) we
have only file-level change information. These two systems are shown using
dotted lines. Naturally, permuting the “Number of methods changed” feature
does not change accuracy for these two systems, as the value is always 0, as
reflected in Figure E.6.

To begin with TARMAQ was constructed to produce a focused recommen-
dation that matches the query as closely as possible [36]. This is evident in
the figure where the “Number of rules generated” being an essential feature
for TARMAQ. Thus for TARMAQ, variation in the number of rules generated
meaningfully correlates with recommendation relevance; if a large subset of
the query has changed with something else in the past, this results in fewer
possible rule antecedents and thus fewer rules, which evidently increases the
likelihood of a relevant recommendation. For Co-CHANGE this feature has
less importance. For the remaining features, Figure E.6 shows a rather clear
picture; the query based features (the bottom four) are the least important,
the attributes they represent are better captured by other features. Of the
interestingness measure based features the “Top 10 mean confidence” proved

214

7. Results and Discussion

Overlap percent

Number of relevant txes
Med. age of relevant txes
Mean age of relevant txes
Mean size of relevant txes
Maximum confidence

Top 10 mean confidence
Top 10 mean support
Number of rules

Query size

Number of files changed
Number of methods changed
Number of new artifacts

abueyn-09H

Overlap percent

Number of relevant txes
Med. age of relevant txes
Mean age of relevant txes
Mean size of relevant txes
Maximum confidence

Top 10 mean confidence
Top 10 mean support
Number of rules

Query size

Number of files changed
Number of methods changed
Number of new artifacts

OVINYVL

0 50 100 150 200
MeanDecreaseAccuracy

Fine grained change—history --- FALSE —— TRUE

Fig. E.6: Feature importance as determined by mean decrease in accuracy. Each line is a separate
software system.

215

Paper E.

most useful. Finally, all history related features are comparably important.

The high degree of co-variance between software systems suggests that
model transfer to other systems is viable. That is, classification models learned
on one or more systems, should be reusable for a new (unknown) system. If
this can be shown to work reliably, systems that are early in their evolution
can still benefit from models generated from more mature systems. However,
care must be taken to adapt the feature variation of the random forest to fit
the variation found in new software system.

7.3 Threats to Validity

Implementation: We implemented and thoroughly tested all algorithms and
our technique for model classification in Ruby and R respectively, However,
we can not guarantee the absence of implementation errors.

Variation in software systems: We have sought to obtain generalizable re-
sults by evaluating over a range of heterogeneous software systems, however,
we also uncovered that relevance prediction performance varies between sys-
tems. Future work should investigate the effects of system characteristics on
prediction performance.

Mining Algorithms studied: In our evaluation we have studied classifica-
tion models for recommendations generated using both the Co-CHANGE and
TARMAQ mining algorithms. For both algorithms we achieve strong results.
However, we acknowledge that comparable results cannot be guaranteed for
other mining algorithms.

Using other interestingness measures: In our study we focused on the
confidence interestingness measure, thus our results are limited to this mea-
sure. As such, future work should investigate the use of other interestingness
measures, both for comparison to the random forest predictor, as well as be-
ing included as part of the model. We also envision that a variation of the
relevance prediction presented here might be an interestingness measure rec-
ommender, thus essentially creating an ensemble of measures where the most
relevant is used at a given time.

Recommendations used for training and evaluation: We train and evaluate
our classification model over a constructed set of change recommendations.
Each recommendation is the result of executing randomly sampled a query
from an existing transaction where the complement of the query and the
source transaction is used as the expected outcome. However, this approach
does not account for the actual order in which changes were made before
they were committed to the versioning system. As a result, it is possible
that queries contain elements that were actually changed later in time than
elements of the expected outcome. As such, we cannot guarantee that rec-
ommendations used in training and evaluation exactly reflect each system’s
evolution.

216

8. Concluding Remarks

8 Concluding Remarks

Change recommendation is clearly an asset to a software developer maintain-
ing a complex system. However, its practical adoption faces two challenges:
recommendations must be both accurate and relevant. We believe that both
challenges can be effectively addressed using historically proven change recom-
mendations.

This paper shows that random forest classification using the 12 features
that describe aspects of the change set (query), change history (transactions)
and generated change recommendations is viable. We compare the random
forest model against the state-of-the-art (based on confidence). We evaluate
our approach in a large empirical study across 16 software systems and two
change recommendation algorithms. Our findings are as follows:

Finding 1: The random forest classification model consistently outperforms
the confidence based models in terms of accuracy (Brier scores).

Finding 2: The random forest classification model achieves significantly
larger area under ROC curve than both confidence based models.

Finding 3: While the confidence measure is appropriate for ranking of arti-
facts, the values themselves should not be interpreted in isolation as overall
estimates of recommendation relevance.

Finding 4: The importance of model features may varies between algo-
rithms. For example, the relevance of TARMAQ recommendations is best pre-
dicted by considering the number of rules generated, while this feature is less
important for Co-CHANGE. However, the remaining features studies showed
consistent importance between algorithms.

Directions for Future Work

Looking forward, we hope to study the effects of using stricter and looser
definitions of relevance (e.g., relevant if correct in top three vs top twenty).
Furthermore, rather than classification, relevance can also be studied as a
regression problem, predicting other recommendation metrics such as preci-
sion, recall, average precision etc. In addition we plan to study the behavior
of relevance classification models over other interestingness measures, and
investigate the viability of model transfer between software systems. Finally,
we plan to look to improve the classification model by including features
such as the number of relevant transactions authored by core contributors
vs occasional contributors, the weighting recent relevant transactions higher
than older transactions, and the text similarity scores between change set and
relevant transactions.

Acknowledgement: This work is supported by the Research Council of

217

References

Norway through the EvolvelT project® and the Certus SFI*. Dr. Binkley is
supported by NSF grant IIA-1360707 and a]. William Fulbright award.

References

[1]

2]

S. Bohner and R. Arnold, Software Change Impact Analysis. CA, USA:
IEEE, 1996.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE International Conference on Software
Maintenance (ICSM). 1EEE, 1998, pp. 190-198. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=738508

D. Beyer and A. Noack, “Clustering Software Artifacts Based on
Frequent Common Changes,” in International Workshop on Program Com-
prehension (IWPC). 1EEE, 2005, pp. 259-268. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421041

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on
Fine-Grained Change Information,” in Working Conference on Reverse
Engineering (WCRE). IEEE, 2008, pp. 42—46. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=4656392

H. Gall, M. Jazayeri, and J. Krajewski, “CVS release history
data for detecting logical couplings,” in International Workshop
on Principles of Software Evolution (IWPSE). 1EEE, 2003, pp. 13-23.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1231205

M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact
analysis of change requests on source code based on inter-
action and commit histories,” in International Working Confer-
ence on Mining Software Repositories (MSR), 2014, pp. 162-171.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2597096http:
/ /dx.doi.org/10.1145/2597073.2597096

C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis - ISSTA '11. New York,
New York, USA: ACM Press, 2011, p. 199. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=2001420.2001445

3#221751/F20
4#203461/030

218

References

[8] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

[9] P-N. Tan, V. Kumar, and J. Srivastava, “Selecting the right
interestingness measure for association patterns,” in International
Conference on Knowledge Discovery and Data Mining (KDD). ACM, 2002,
p. 32. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
775047.775053

[10] K. McGarry, “A survey of interestingness measures for knowledge dis-
covery,” The Knowledge Engineering Review, vol. 20, no. 01, p. 39, 2005.

[11] L. Geng and H.]J. Hamilton, “Interestingness measures for data
mining,” ACM Computing Surveys, vol. 38, no. 3, sep 2006. [Online].
Available: http:/ /portal.acm.org/citation.cfm?doid=1132960.1132963

[12] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD International
Conference on Management of Data. ACM, 1993, pp. 207-216. [Online].
Available: http://portal.acm.org/citation.cfm?doid=170035.170072

[13] L. Moonen, S. Di Alesio, D. W. Binkley, and T. Rolfsnes, “Practical Guide-
lines for Change Recommendation using Association Rule Mining,” in
International Conference on Automated Software Engineering (ASE). Singa-
pore: IEEE, sep 2016.

[14] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” Proceedings of the 23th International
Conference on Machine Learning, pp. 161-168, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1143844.1143865

[15] P. Lenca, P. Meyer, B. Vaillant, and S. Lallich, “On selecting
interestingness measures for association rules: User oriented description
and multiple criteria decision aid,” European Journal of Operational
Research, vol. 184, no. 2, pp. 610-626, jan 2008. [Online]. Available:
http:/ /linkinghub.elsevier.com /retrieve /pii/S0377221706011465

[16] T.-d. B. Le and D. Lo, “Beyond support and confidence: Explormg
interestingness measures for rule-based specification mining,” in
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 1EEE, 2015, pp. 331-340. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=7081843

[17] W. Cheetham, “Case-Based Reasoning with Confidence,” in Euro-
pean Workshop on Advances in Case-Based Reasoning (EWCBR), ser
Lecture Notes in Computer Science, vol 1898. Springer, 2000, pp.

219

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

References

15-25. [Online]. Available: http://www.springerlink.com/content/
5dt7vmt5jedngyq7http:/ /link.springer.com/10.1007 / 3-540-44527-7{_}3

W. Cheetham and J. Price, “Measures of Solution Accuracy
in Case-Based Reasoning Systems,” in European Conference on
Case-Based Reasoning (ECCBR), ser. Lecture Notes in Computer
Science, vol 3155. Springer, 2004, pp. 106-118. [Online]. Avail-
able: http:/ /www.springerlink.com/content/mkl1871fx92jr02kOhttp:
/ /link.springer.com/10.1007 /978-3-540-28631-8{_}9

T.-D. B. Le, E Thung, and D. Lo, “Predicting Effectiveness of IR-Based
Bug Localization Techniques,” in 2014 IEEE 25th International Symposium
on Software Reliability Engineering. IEEE, nov 2014, pp. 335-345.
[Online]. Available: http:/ /ieeexplore.ieee.org/document/6982639 /

T-D. B. Le, D. Lo, and F Thung, “Should I follow this
fault localization tool’s output?” Empirical Software Engineering,
vol. 20, no. 5, pp. 1237-1274, oct 2015. [Online]. Available:
http:/ /link.springer.com /10.1007 /s10664-014-9349-1

T. Rolfsnes, L. Moonen, S. Di Alesio, R. Behjati, and D. W. Binkley,
“Improving change recommendation using aggregated association
rules,” in International Conference on Mining Software Repositories (MSR).
ACM, 2016, pp. 73-84. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2901739.2901756

H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hitonen, and H. Man-
nila, “Pruning and Grouping Discovered Association Rules,” in Work-
shop on Statistics, Machine Learning, and Knowledge Discovery in Databases,
Heraklion, Crete, Greece, 1995, pp. 47-52.

B. Liu, W. Hsu, and Y. Ma, “Pruning and summarizing the discovered
associations,” in SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 1999, pp. 125-134. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?doid=312129.312216

S. Kannan and R. Bhaskaran, “Association Rule Pruning based on Inter-
estingness Measures with Clustering,” Journal of Computer Science, vol. 6,
no. 1, pp. 3543, dec 2009.

M.]J. Zaki, “Generating non-redundant association rules,” in
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 2000, pp. 34-43. [Online]. Available: http:
/ /portal.acm.org/citation.cfm?doid=347090.347101

220

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

References

E. Baralis, L. Cagliero, T. Cerquitelli, and P. Garza, “Generalized
association rule mining with constraints,” Information Sciences, vol. 194,
pp. 68-84, 2012. [Online]. Available: http://linkinghub.elsevier.com/
retrieve /pii/S0020025511002659

O. Maimon and L. Rokach, Data Mining and Knowledge Discovery
Handbook, O. Maimon and L. Rokach, Eds. Springer, 2010.
[Online]. Awvailable: http:/ /books.google.com /books?hl=en{&}lr=
{&}id=5-XvEQWABeUC{&}oi=fnd{&}pg=PR21{&}dq=Data+Mining+
and+knowledge+discovery+handbook{&}ots=LBVkfoBx65{&}sig=
u6cIn2kopRhLrbpgbMOFhvYhFgk{%}5Cnhttp:/ /www.springerlink.
com/index/10.1007 /978-0-387-09823-4http:/ /link.springer.com/1

Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of
association rule algorithms,” in SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 2001, pp. 401-406.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=502512.
502572

W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient Adaptive-Support
Association Rule Mining for Recommender Systems,” Data Mining and
Knowledge Discovery, vol. 6, no. 1, pp. 83-105, 2002. [Online]. Available:
http:/ /link.springer.com /10.1023 / A:1013284820704

N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” ACM SIGMOD Record, vol. 35, no. 1, pp. 14-19, mar 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1121995.
1121998

L. Moonen, S. Di Alesio, T. Rolfsnes, and D. W. Binkley, “Exploring the
Effects of History Length and Age on Mining Software Change Impact,”
in IEEE International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), sep 2016, pp. 207-216.

P. Resnick and H. R. Varian, “Recommender systems,” Communications
of the ACM, vol. 40, no. 3, pp. 56-58, mar 1997. [Online].
Available: http://portal.acm.org/citation.cfm?id=245108.245121http:
/ /portal.acm.org/citation.cfm?doid=245108.245121

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429-445, 2005. [Online]. Available: http:
/ /ieeexplore.ieee.org/lpdocs/epic03 /wrapper.htm?arnumber=1463228

R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rules with Item
Constraints,” in International Conference on Knowledge Discovery and Data
Mining (KDD). AASI, 1997, pp. 67-73.

221

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

References

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blending
conceptual and evolutionary couplings to support change impact analy-
sis in source code,” in Working Conference on Reverse Engineering (WCRE),
2010, pp. 119-128.

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the Analysis of Evolutionary Coupling for Software
Change Impact Analysis,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, mar 2016,
pp- 201-212. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7476643

S. Eick, T. L. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,”
IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 1-12,
2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=895984

A. T. T. Ying, G. Murphy, R. T. Ng, and M. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574-586, 2004.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1324645

M.-C. Tseng and W.-Y. Lin, “Mining Generalized Association Rules
with Multiple Minimum Supports,” in Lecture Notes in Computer
Science (LNCS), 2001, vol. 2114, pp. 11-20. [Online]. Available:
http:/ /link.springer.com/10.1007 /3-540-44801-2{_}2

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in International Conference on Very Large Data Bases (VLDB), 1994,
pp. 487-499.

C. Bergmeir and J. M. Benitez, “On the use of cross-validation for time
series predictor evaluation,” Information Sciences, vol. 191, pp. 192-213,
may 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ins.2011.12.
028http:/ /linkinghub.elsevier.com /retrieve/ pii/S0020025511006773

A. Buja, W. Stuetzle, and Y. Shen, “Loss functions for binary class prob-
ability estimation and classification: structure and application,” 2005.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.184.5203{&}rep=rep1{&}type=pdf

222

