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Abstract—Software change impact analysis aims to find arti-
facts potentially affected by a change. Typical approaches apply
language-specific static or dynamic dependence analysis, and are
thus restricted to homogeneous systems. This restriction is a ma-
jor drawback given today’s increasingly heterogeneous software.
Evolutionary coupling has been proposed as a language-agnostic
alternative that mines relations between source-code entities from
the system’s change history. Unfortunately, existing evolutionary
coupling based techniques fall short. For example, using Singular
Value Decomposition (SVD) quickly becomes computationally
expensive. An efficient alternative applies targeted association
rule mining, but the most widely known approach (ROSE)
has restricted applicability: experiments on two large industrial
systems, and four large open source systems, show that ROSE
can only identify dependencies about 25% of the time.

To overcome this limitation, we introduce TARMAQ, a new al-
gorithm for mining evolutionary coupling. Empirically evaluated
on the same six systems, TARMAQ performs consistently better
than ROSE and SVD, is applicable 100% of the time, and runs
orders of magnitude faster than SVD. We conclude that the pro-
posed algorithm is a significant step forward towards achieving
robust change impact analysis for heterogeneous systems.

I. INTRODUCTION

As a software system evolves, the amount and complexity of

interactions in the code grows. For a developer, it therefore

becomes increasingly challenging to be in control of the

impact of a change made to the system. One potential solution

to this problem, change impact analysis [5, 14, 18, 28], aims

to find artifacts (e.g., files, methods, classes etc.) affected by

a given change. This knowledge can then be used either as

direct feedback to the developer, or as the basis for another

down-stream task such as test-case selection and prioritization.

Traditionally, change impact analysis has been performed

using static or dynamic dependence analysis (e.g., by identify-

ing the methods that call a changed method). One advantage

of such approaches is that they are considered safe, as all

potentially affected artifacts are found [4]. However, in recent

years there has been an investigation of alternative approaches.

This search is motivated, in part, by limitations in existing

techniques. For example, static and dynamic dependence anal-

ysis are generally language-specific, making them unsuitable

for the analysis of heterogeneous software systems [25]. In

addition, they can involve considerable overhead (e.g., dy-

namic analysis’ need for code-instrumentation), and tend to

over-approximate the impact of a change.

One alternative is to identify dependencies through evolu-

tionary coupling. Such couplings differ from the ones found

through static and dynamic dependence analysis, in that they

are based on how the software system has evolved over time.

Using this information in essence attempts to tap into the

developer’s inherent knowledge of the inner workings of the

system. This knowledge can manifest itself in several ways,

for example through commit-comments, bug-reports, context-

switches in an IDE etc. In this paper we consider co-change

as a basis for establishing evolutionary couplings. Co-change

information can be extracted from a project’s version control

system, its issue tracking system, or both, depending on how

the project maintains its software revision history.

The goal of evolutionary coupling is to mine connections

between entities in the software from the co-change data.

While several levels of granularity are possible, in this paper

we focus on connections at the file level. Observe that this

is without loss of generality, as the mining algorithms are

agnostic to the choice of granularity. Provided that suitably

fine-grained co-change data is obtained, the algorithms will

just as well relate methods or variables as files in a system.

There are several options to mine evolutionary coupling

from co-change data. For example, although it is computation-

ally expensive, Singular Value Decomposition (SVD) can be

used to form clusters of files. These clusters can then be used

to predict files likely to change together [20]. A considerably

faster approach is based on Srikant et al.’s targeted association

rule mining algorithm [22].

However, the off-the-self use of this algorithm has a sig-

nificant limitation causing a lack of applicability (a notion

formalized in Section IV). Consider ROSE, which uses the

algorithm for software change recommendations [30]. Exper-

iments with ROSE on six large systems show that it can only

find evolutionary couplings about 25% of the time.

This paper presents TARMAQ, a new generalized algo-

rithm for targeted association rule mining that overcomes this

limitation. Moreover, we make the following additional con-

tributions: we classify the limitations of existing algorithms,

and we empirically evaluate the performance of TARMAQ on

two industrial software systems and four open source software

systems. We find that TARMAQ performs consistently better

than two popular alternatives, is applicable 100% of the time,

and runs orders of magnitude faster than SVD. We conclude

that the new algorithm is a significant step forward towards

achieving robust change impact analysis for heterogeneous

systems.
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II. RESEARCH QUESTIONS

Our research is driven by a desire to conduct impact analysis

on large heterogeneous systems via evolutionary coupling. De-

spite its limited applicability, targeted association rule mining

has shown promise in addressing software engineering prob-

lems. Combined, these two observations lead us to investigate

the following research questions:

RQ1 What are the limitations of existing techniques to

analyse evolutionary coupling?

RQ2 Can we devise an alternative technique that does not

suffer from these limitations?

RQ3 How well does the best alternative perform in com-

parison to the state-of-the-art?

The remainder of the paper is organized as follows: Section III

defines some terminology and provides background on the

use of association rule mining. The limitations of existing

algorithms (RQ1) are discussed in Section IV. In Section V

we address RQ2 by introducing TARMAQ, a new algorithm

for targeted association rule mining algorithm in software en-

gineering context. We address RQ3 by empirically evaluating

TARMAQ and state-of-the-art algorithms on a series of large

software systems in Sections VI – VIII. We discuss related

work in Section IX, and we conclude in Section X.

III. BACKGROUND

Agrawal et al. introduced the concept of association rule

mining as the discipline aimed at inferring relations between

entities of a dataset [1]. The relations, called association rules,

are identified from a collection of transactions where each

transaction is a subset of the entities. For example, consider the

classic application of analyzing shopping cart data: if multiple

transactions include bread and butter then the corresponding

association rule would be bread → butter. This can be read

as “if you buy bread, then you are also likely to buy butter”.

In the context of evolutionary coupling for software systems,

the entities are the files of the system and the collection

of transactions is the change history H of the system. Note

that, in general, entities in the system can be considered at

other levels of granularity, such as method- or procedure-level.

Each transaction T ∈ H is a commit of changed files, i.e., a

transaction includes the set of files that were either changed

or added while addressing a given bug or feature addition

(creating a logical dependence [7]).

Finally, an association rule is an implication of the form

A → B, where A and B are disjoint, A is referred to as the

antecedent, and B is referred to as the consequent. In our use,

the association rule A → B denotes that “if the files in A

change, then the files in B are also expected to change”.

Several measures are used to reason about the rules. First,

the frequency, denoted φ, of association rule A → B is the

number of transactions in H where items in A and B change

together:

φ(A→ B)
def

= |{T ∈ H : A ∪B ⊆ T}| (1)

Usually, the frequency of a rule is normalized by dividing

by the number of transactions. For this purpose, the support,

denoted σ, of a rule A→ B is defined as the frequency of a

rule divided by the number of transactions in the history:

σ(A→ B)
def

=
φ(A→ B)

|H|
(2)

Intuitively, higher support for a rule means that it is more likely

to hold. Alternatively, rules with low support identify relations

that rarely occur. For this reason, a minimum threshold on

support is often used to filter out uninteresting rules.

The final measure used, confidence, denoted κ, measures

the reliability of the inference made by a rule. The confidence

of a rule is defined as its frequency divided by the number of

transactions that contain its antecedent.

κ(A→ B)
def

=
φ(A→ B)

|{T ∈ H : A ⊆ T}|
(3)

Confidence measures the ratio of the transactions in which the

files in A and B are present, to the transactions where files

in A are present. Consequently, the higher the confidence of

a rule A→ B, the higher the chance that when the files in A

are modified, then the files of B are also modified.

As originally defined [1], association rule mining generates

rules that express patterns in a complete data set. However,

some applications can exploit a more focused set of rules.

Targeted association rule mining [23] is a refinement that

focuses the generation of rules on a particular query supplied

by the user. It does so by removing all transactions that are

not related to the query from the database of transactions (the

change history H in our context), which results in a dramatic

reduction of execution time [23].

IV. PROBLEM DESCRIPTION

This section characterizes a key limitation of applying off-

the-shelf targeted association rule mining to the problem of

providing developer change recommendations. As described

earlier, the technique removes all transactions that are not

related to the query from the database of transactions used for

rule generation. However, this strategy can often filter away

all the transactions, leaving an empty database, and rendering

the technique incapable of producing a recommendation.

Before considering the causes of this limitation, we formal-

ize the notion of applicability:

Definition: Given a history H and a query Q, a targeted

association rule mining technique T is said to be applicable

to query Q if the filtered history after removing all transactions

not related to Q is non-empty. Conversely, we say that T is

not applicable when the filtered history for Q is empty.

It turns out that there are two patterns that lead to a lack

of applicability of the existing techniques. The first pattern

is when a file in the query has never occurred before in

any transaction of the history. The second pattern is a query

of previously seen files that nonetheless have not been seen

together as a proper subset of a single transaction. The second

pattern requires a proper subset because a transaction that

exactly matches the query involves no other files, and thus

there are no other files to recommend. Therefore, nothing can

be learned from such a transaction.
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Seen Queries

Unseen Queries

Fig. 1. The percentage of queries that were found to be seen or unseen in
the change histories of each of the software systems.

To illustrate the two patterns, let a, b, c, d and e represent

five source files belonging to an evolving software system.

Suppose that the version history of the system, H, contains

three transactions:

H = [{a, b, c}, {a, d}, {c, d}]

Then, the queries q1 = {e, d} and q2 = {a, c, d} exemplify

the two patterns for which existing targeted association rule

mining techniques are not applicable. q1 includes a new

file e which does not occur in any transaction of H. In

this case techniques such as ROSE [30] fail to provide any

recommendation. In the second example, the files in q2 have

all occurred in the history, but never together. Here again

ROSE fails to provide a recommendation. In the following, we

refer to these queries as unseen queries because they include

a pattern that is unseen in the change history.

The opposite of an unseen query is a seen query. For such

queries ROSE is able to provide a recommendation. Two

examples of seen queries are q3 = {a} and q4 = {a, b}.
Because there is at least one transaction in H that is a proper

superset of these queries, ROSE can produce a result.

To find out to what extent this limitation affects the ap-

plicability of ROSE and similar approaches, such as that of

Ying et al. [26], we studied the distribution of unseen and

seen queries in four open source repositories, namely, Git1,

Apache HTTP Server2, Linux Kernel3, MySQL4 as well as

two software repositories from our industry partners, Cisco

Norway5 and Kongsberg Maritime (KM)6. The results are

reported in Figure 1 7. The high percentage of unseen queries

in all six cases implies that traditional targeted association rule

mining cannot produce results a significant amount of the time.

We can answer our first research question, RQ1, in the

affirmative; it is possible to characterize the limitations of

existing evolutionary coupling based techniques. Specifically,

the two patterns described in this section prevent current

techniques from returning a result. This is because these

1 https://www.openhub.net/p/git
2 https://www.openhub.net/p/apache
3 https://www.openhub.net/p/linux
4 https://www.openhub.net/p/mysql
5 http://www.cisco.com/web/NO/index.html
6 http://www.km.kongsberg.com/
7The study re-enacted the change history,basically using commits as a query

over the change history up to the point that the commit was made.

Algorithm 1: TARMAQ

Require: The history: H, and the query: Q

Ensure: A ranked list of files: F
1 {Filtering Step}

2 k ← 0
3 Hf ← ∅ {Hf : the filtered history}

4 for all T ∈ H do

5 if |Q ∩ T | = k then

6 Hf ← Hf ∪ {T}
7 else if |Q ∩ T | > k then

8 k ← |Q ∩ T |
9 Hf ← {T}

10 {Rule Creation Step}

11 R ← ∅ {R: the set of rules}

12 for all T ∈ Hf do

13 Q′ ← Q ∩ T

14 for all x ∈ T \Q′ do

15 R ← R∪ {Q′ → x}
16 update(σ(Q′ → x))
17 update(κ(Q′ → x))
18 {Ranked List Creation Step}

19 Rs ← sort(R) {sorts using σ and κ}

20 for all i ∈ [1.. length (Rs)] do

21 F [i]← consequent(Rs[i])
22 return F

techniques use an over-restrictive history filtering, which only

keeps transactions where all the files in the query are present.

This suggests the need for alternative and more relaxed rule

filtering methods.

V. PROPOSED SOLUTION: TARMAQ

This section presents TARMAQ, a novel algorithm imple-

menting Targeted Association Rule Mining for All Queries.

TARMAQ takes as input a transaction history H and a query

Q, and generates a ranked list F of files where higher

ranked files are more related to Q. As shown in Algorithm 1,

TARMAQ consists of three steps: transaction filtering, rule

creation, and finally the ranked list creation.

Given a query Q = {file1, file2, . . . filen}, the transaction

filtering extracts from H those transactions that have the

largest intersection with Q. More formally, transaction T ∈ H
is kept if |T ∩Q| = k, where k is the size of the largest subset

of Q seen in the history. In contrast, ROSE keeps only those

transactions where Q ⊆ T .

Revisiting the example from Section IV, for q2 the filtering

removes none of the three transactions as each includes two of

the files from q2. However, for q3 the final transaction, {c, d},
is removed by the filtering because {a} ∩ {c, d} = ∅.

After filtering, the second step is rule creation. TARMAQ

generates rules of the form Q′ → x, where x represents a

single file and Q′ is a subset of Q with |Q′| = k. Such a rule

is created if and only if there exists a transaction T ∈ H such

that Q′∪{x} ⊆ T . Considering the example from Section IV,

TARMAQ generates three rules for q3: {a} → {b}, {a} →
{c}, and {a} → {d}.
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Note that when H contains at least one transaction T such

that Q ⊂ T , TARMAQ generates the same set of rules as

ROSE. However, unlike ROSE, when Q is not contained in

any T , TARMAQ generates rules whose antecedent is as close

to Q as possible. In contrast, ROSE fails to generate any rules.

In the final step TARMAQ produces the ranked list F of

recommended files. This is done by first sorting on the support

of each rule, and in the case of ties (which are likely) on the

confidence of each rule. The final list of files is then produced

by mapping each rule to its consequent.

The rational for having a single file as the consequent

includes both efficiency and utility. More general rules would

involve Q′ implying that a set of files should be included

rather than a single file. Algorithms for generating such

rules are computationally more expensive and may require a

search through all possible subsets, which is an exponential

computation and thus quickly becomes a performance concern.

Furthermore, there is no loss of utility because in a software

context it is sufficient to recommend files independently. The

independence of software entities was exploited by ROSE,

which also produces singleton consequents [30].

By looking for transactions that contain subsets of Q instead

of Q itself, we obtain some recommendation evidence in

the absence of transactions involving all of Q. For example,

consider the situation where an engineer has modified files

a, b, and c to fix a bug, but errantly forgot to modify file x.

In this case, we want to mine the rule {a, b, c} → x with high

confidence. However, this is not possible if c is new or has

not been previously changed. Nevertheless, assuming that a,

b, and x have frequently changed together before, TARMAQ

produces the rule {a, b} → x with high confidence. Thus, in

answer to RQ2, using the largest intersection, we can develop

a technique that does not suffer from a lack of applicability.

VI. EVALUATION

The evaluation compares TARMAQ, ROSE, and SVD by

emulating a developer’s need for a change-recommendation

tool. To facilitate the three experiments we assume that the

files of a transaction are related and evaluate performance by

partitioning transactions into a query and an expected output.

To describe the evaluation we first describe the subject systems

used as test subjects in the experiments. We then detail the

query generation process, the query evaluation, and finally,

the implementation and execution environment.

A. Subject Systems

To assess the algorithms in a variety of conditions, we

selected six systems having varying size and frequency of

commits. Two of these are systems from our industry partners,

Kongsberg Maritime (KM) and Cisco Norway. KM is a

leading company in the production of systems for positioning,

surveying, navigation, and automation of merchant vessels and

offshore installations. Cisco Norway is the Norwegian division

of Cisco Systems, a worldwide leader in the production of net-

working equipment. We validated TARMAQ in the common

software platform KM uses in applications in the maritime
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Fig. 2. Distribution of commit sizes for the different cases

and energy domain, and in the Cisco software product line

for professional video conferencing systems. The other four

systems are part of well known open-source projects, namely

Apache HTTP Server, Linux Kernel, MySQL, and Git. Table I

summarizes descriptive characteristics of the software systems

used in the evaluation. The table shows that the systems we

selected vary from medium to large size, with up to forty

thousand different files committed in the transaction history.

Furthermore, the oldest transactions from the system histories

are fifteen years old in the case of KM. Note that all the

systems are heterogeneous, i.e., they are implemented in more

than a single programming language.

A key aspect of each system is the way its authors interact

with the version control system. This usage typically depends

on the software process adopted by the developer’s organi-

zation. For example, agile teams tend to frequently commit

small incremental changes to the project artifacts following

the “commit early, commit often” philosophy. On the other

hand, in more traditional software processes developers might

commit only on a monthly basis, with each commit changing

a large number of files. To gain some understanding of the

commit patterns used, Figure 2 shows violin plots of the six

software systems. For each plot the x-axis shows commit size

using a log scale. Each violin includes quartile markers, Q1,

Q2, and Q3, and a marker for the 99th percentile, p99. From

these plots certain patterns emerge. For example, Linux and

Git are dominated by small commits while MySQL and KM

include considerably more larger commits. This variety of

patterns is relevant to our evaluation.

B. Determining transactions

While our approach is not dependent on the versioning sys-

tem used, adaptors still need to be written for each versioning

system. These adaptors take a change-history from a specific

versioning system as input, and output a set of transactions
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TABLE I
CHARACTERISTICS OF THE EVALUATED SOFTWARE SYSTEMS

Software System Unique Avg. transaction size History covered by Languages used
Files (# files) 10 000 transactions

MySQL 21854 10.1 2.34 years C++ (54%), C (19%), JavaScript (17%), 23 other (10%)
Git 2141 1.9 4.2 years C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache HTTP Server 7905 6.9 7.18 years XML (56%), C (32%), Forth (8%), 19 other (4%)
Linux Kernel 9021 2.2 0.15 years C (94%), 16 other (6%)
Kongsberg Maritime 35111 5.1 15.97 years C++, C, XML, other build/config (% undisclosed)
Cisco Norway 41701 6.2 1.07 years C++, C, C#, Python, Java, XML, other build/config (% undisclosed)

conforming to a common format. Our prototype tool uses this

common format.

Depending on the versioning system however, it might not

always be perfectly clear what constitutes a “transaction”, as

defined as “a set of related changes”; For each versioning

system, a best approximation should be made. For example,

in the Concurrent Versions System (CVS), changes are not

explicitly grouped into commits, and it is therefore necessary

to consider time-stamps (e.g., sliding time windows), log

messages and developer identity to define transactions [29].

Another aspect that needs to be considered is if previous

commits can be modified (i.e., history rewriting). If this is

not possible in the versioning system, a developer who has

forgotten to commit a relevant file needs to make an additional

commit. Again, a sliding time window is a potential solution

here.

For this paper, all chosen software-systems use the Git

version control system.8 Our adaptor for Git treats the files

changed in one commit as one transaction. Merge commits

however, are ignored through the use of the ‘–no-merges’

option. Additionally it should be noted that Git supports

history rewriting through the ‘–amend’ option and the ‘rebase’

command. These commands obviate the need for employing

time windows in the Git adaptor. Finally, it should also

be noted that only transactions from the main branch are

considered.

C. Query Generation Process

Conceptually, a query Q represents a set of files that a

developer changed since the last synchronization with the

version control system. The key idea behind our evaluation

is to generate, starting from a transaction T , a set of queries

that emulate a developer errantly forgetting to update some

subset of T .

The first step in the process is to select a set of transactions.

The distribution plots are clearly skewed towards small com-

mits. In fact, 75% of the commits have ten or fewer files while

90% have thirty or fewer files. For this reason, and because

we assume that larger commits often consist of unrelated files

committed together because of a directory reshuffle or license

change, we follow the work of Zimmerman et al. [30] and

remove transactions of more than thirty files.

From the remaining commits we sample forty commits

for each transaction size between two and thirty. We use

8With the exception of Kongsberg Maritime, where a special adaptor was
written.

the resulting 1160 transactions to form the queries used to

investigate how the three algorithms behave over a range of

transaction sizes.

To mimic a developer forgetting files, we partition each of

the 1160 transaction T into a non-empty query Q and a non-

empty expected outcome E
def

= T \ Q. In this way, we can

evaluate the ability of an algorithm to infer E from Q. To

investigate a range of query sizes, we generate one query for

each size from one to |T | − 1. For example, for a transaction

of size 4, we generate three queries of size 1, 2, and 3, whose

expected outcomes thus have sizes 3, 2 and 1, respectively.

Note that we do not sample commits of size one because they

cannot be split into a query and expected outcome.

D. Query Evaluation

Evaluating the generated queries requires executing each

query and then comparing the resulting ranked lists. To execute

each query Q that was generated from transaction T , we

use the 10 000 commits prior to T as the history. In these

experiments 10 000 represents a balance between to short a

history, which would lack sufficient connections, and to long a

history, which is inefficient and can even be misleading when

previously connected files are not longer connected.

Comparing the ranked lists produced by TARMAQ, ROSE,

and SVD requires an appropriate performance measure. Prior

work on association rule mining typically uses precision and

recall as performance metrics. The precision of a recommen-

dation is the ratio of the number of correct items recommended

to the total number of items recommended. The recall of a

recommendation is the ratio of the number of correct items

recommended to the total number of correct items.

As a practical consideration, while precision and recall

are designed for unordered results a recommendation tool’s

output is a ranked list. Consider the difference between a

single correct recommendation occurring at the beginning of

the list and a single correct recommendation occurring further

down the list. These two have the same precision and recall.

However, the correct recommendation at the beginning of the

list is far more valuable, because it is far more likely to be

considered. This is a well known phenomenon in information

retrieval where, for example, internet searchers rarely look past

the first ten results [9].

A more appropriate performance measure in the context

of a ranked list is the average precision (AP ). For query Q

producing ranked recommendation list R, AP is defined as
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AP(Q,R)
def

=

|R|∑

k=1

P (k) ∗ �r(k) (4)

where P (k) is the precision calculated on the first k files in

the list, (i.e., the precision@k) and �r(k) is the change in

recall calculated only on the k − 1th and kth files, i.e., the

fractional increase in true positives compared to the previous

rank. Table II illustrates the computation of AP , P (k), and

�r(k) given the ranked list [c, a, f, g, d] and the expected

outcome {c, d, f}.
Finally to compare the performance of two tools, we use

the mean average precision (MAP) computed over a set of

queries. A tool producing a higher MAP value is, on average,

producing better results. In addition, we compare the tools

based on the total wall-clock time taken to execute a collection

of queries.

E. Implementation and Execution Environment

We implemented all three algorithms in RUBY, using LA-

PACKE C to implement SVD through the NMatrix gem [24].

Our implementation is open-source and can be found online.9

We performed the experiment executing the algorithms, one

at a time, on a c4.2xlarge Amazon EC2 instance.10

VII. RESULTS

This section addresses RQ3 by reporting objective measures of

the data from our evaluation. Our interpretation of the data can

be found in Section VIII. The results are organized according

to the following questions:

RQ3.1 What is the overall performance of all algorithms?

RQ3.2 What is the performance on seen queries of all

algorithms?

RQ3.3 What is the performance on unseen queries of TAR-

MAQ and SVD?

RQ3.4 Is there a significant difference in performance on

seen and unseen?

RQ3.5 How do the algorithms perform on the individual

software systems?

While not unexpected, we found that the average precision

distribution for the different software systems and algorithms

were not normally distributed, we therefore use the Friedman

Test, a non-parametric test for differences between several

samples.

9 https://bitbucket.org/evolveIT/tarma
10 https://aws.amazon.com/

TABLE II
EXAMPLE OF AVERAGE PRECISION CALCULATION

Consider as relevant files: c, d, f

Rank (k) File P (k) �r(k)

1 c 1/1 1/3
2 a 1/2 0
3 f 2/3 1/3
4 g 2/4 0
5 d 3/5 1/3

AP = 1/1 ∗ 1/3 + 1/2 ∗ 0 + 2/3 ∗ 1/3 + 2/4 ∗ 0 + 3/5 ∗ 1/3 ≈ 0.75
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Fig. 3. Overall distribution of average precision for each algorithm

A. Overall Performance on Average Precision (RQ3.1)

The overall performance implies what is to be expected of

each algorithm when the type of query is unknown (seen

vs unseen), which would normally be the case. We test the

following hypothesis:

H0 The average precision distribution generated by each

algorithm is the same.

H1 The average precision distribution generated by each

algorithm is different.

Figure 3 shows the overall distribution of average precision

for each of the investigated algorithms. Here it is clear that

ROSE cannot produce results for a significant number of the

queries, and therefore ends up with a high percentage of 0

AP values. Furthermore we see that TARMAQ has a higher

median than SVD and also a larger interquartile range.

A Friedman rank sum test11 of the distributions yields a

p-value < 0.00001, and we therefore reject H0 and conclude

that there is a significant difference between the algorithms.

Since we accept H1, we can do a post-hoc test to actually

look at which algorithms were different, to this end we use

individual Wilcoxon signed rank tests12. Since we do multiple

comparisons (tests) we have to use Bonferroni adjustment on

what should be considered significant p-values. With three

factor levels (three algorithms) it is sufficient with two di-

rectional tests to establish TARMAQ’s place in the ordering

of algorithms. The Bonferroni adjustment is given by dividing

the desired alpha level by the number of performed tests, we

thus get an adjusted alpha of 0.05/2 = 0.025.

We have the following hypotheses:

HTvR
0

The average precision distribution generated by

TARMAQ is less than that of ROSE.

HTvR
1

The average precision distribution generated by

TARMAQ is greater than that of ROSE.

HTvS
0

The average precision distribution generated by

TARMAQ is less than that of SVD.

HTvS
1

The average precision distribution generated by

TARMAQ is greater than that of SVD.

In Table III we provide the p-values of the two Wilcoxon

tests. In both cases we can safely reject the null-hypothesis,

and conclude that on overall, TARMAQ performs better than

both ROSE and SVD.

11 We used friedman.test in R.
12 We used wilcox.test in R with: alternative = ‘greater’, paired = TRUE.
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Fig. 4. Overall distribution of execution time for each algorithm. Note that
ROSE executes faster because it does not produce results in all cases.

B. Overall Performance on Time (RQ3.1)

To investigate the execution cost of each algorithm, we per-

form the same analysis as we did for average precision. The

overall execution time distributions can be found in Figure 4.

At once we see that SVD have an obviously larger spread in

execution times than ROSE and TARMAQ, and a Friedman

rank sum test does indeed show significant difference between

the distributions (p-value < 0.00001). The more interesting

analysis is to compare ROSE and TARMAQ, as they have a

much closer distribution. A Wilcoxon test showed that ROSE

was significantly faster than TARMAQ (p-value < 0.00001), a

large part of this however, might be attributed to the large

number of queries where ROSE does not produce results

(cannot find relevant transactions), and therefore does not need

to perform any rule creation. The mean execution time for

TARMAQ was 0.09 s, 0.003 s for ROSE, and 17.5 s for SVD.

C. Performance on seen queries (RQ3.2)

In this section and in Section VII-D we look at algorithm

performance on either seen or unseen queries respectively. This

division gives us a better view into how the two types of

queries differ.

In Figure 5 we provide the distribution of average precision

on all seen queries for all algorithms. We can see that, as

expected, ROSE and TARMAQ have equal distributions on

seen queries, while SVD performs worse. A Friedman test on

the distributions was found significant (p-value < 0.00001),

i.e., there is a difference between the algorithms. A test of sig-

nificant difference between ROSE and TARMAQ is unneeded,

as they produce exactly the same result here, but a Wilcoxon

test of TARMAQ and SVD was found significant (p-value <

0.00001). We can therefore conclude that both TARMAQ and

ROSE perform better than SVD on seen queries.

D. Performance on unseen queries (RQ3.3)

When a query consists of files that have never changed

together before, we consider the query to be unseen. Since

TABLE III
P-VALUES FOR WILCOXON PAIRWISE MULTIPLE COMPARISONS

TARMAQ conclusion

ROSE p-value < 0.00001 reject HTvR
0

SVD p-value < 0.00001 reject HTvS
0

TABLE IV
THE MEAN AVERAGE PRECISION OF EACH ALGORITHM ON EACH

SOFTWARE SYSTEM

ROSE SVD TARMAQ Friedman p-value

cisco 0.2063 0.1387 0.3864 < 0.00001
git 0.1042 0.1183 0.2412 < 0.00001

httpd 0.1035 0.2194 0.3049 < 0.00001
km 0.1711 0.3774 0.3842 < 0.00001

linux 0.1300 0.5496 0.3367 < 0.00001
mysql 0.1256 0.2062 0.2958 < 0.00001

ROSE cannot produce recommendations on unseen queries,

only TARMAQ and SVD are evaluated in this section. With

only two subjects, we can use the Wilcoxon test directly

without Bonferroni correction.

Figure 6 shows a boxplot of the average precision distribu-

tion of TARMAQ and SVD on unseen queries. A Wilcoxon

test on TARMAQ and SVD distributions proved to be sig-

nificant (p-value < 0.00001), we can therefore conclude that

TARMAQ performs better than SVD on unseen queries.

E. Seen vs. unseen queries (RQ3.4)

In this section we investigate the difference in performance

on seen and unseen queries, i.e., if the distributions shown

in Figure 5 and Figure 6 significantly differ. To get a good

overview we have plotted the overall distributions in Figure 7.

To compare the distributions we use an unpaired Wilcox test,

as the query population obviously is different for the seen and

unseen queries. The test yields a p-value < 0.00001, and we

can therefore conclude that unseen queries are significantly

harder than the seen queries.

F. Performance of algorithms on individual systems (RQ3.5)

In this final results section we look closer at how performance

varies over the individual software systems. To this end we

present the mean average precision for each software system

and algorithm combination in Table IV. The last column

in Table IV lists the p-value for a Friedman test of equal

distributions between the algorithms. In all cases the p-value

was found significant. To determine which algorithm did

the best for each software system, we performed post-hoc

Wilcoxon tests on each algorithm pair. The best performing

algorithm is shown in bold. For all software systems, with the

exception of linux, TARMAQ is the top performer.
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Fig. 5. Distribution of average precision on seen queries for each algorithm
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Fig. 6. Distribution of average precision on unseen queries for each algorithm

VIII. DISCUSSION

In this section we will discuss some implications of the results

presented in Section VII.

A. Overall Performance on Average Precision (RQ3.1)

To answer RQ3.1 we measured the overall performance of

ROSE, TARMAQ and SVD over all software systems, regard-

less of the type of query (seen vs unseen). We argue that this is

the most realistic comparison, as it is hard to know the query

type a priori. We therefore claim that a good evolutionary

coupling based algorithm for change impact analysis should

be agnostic to the type of query. The same argument also holds

in terms of queries on different software systems. While there

might be systems where evolutionary couplings are harder to

analyze because of developer practices, the general algorithm

should not be too sensitive to specific software systems.

B. Overall Performance on Time (RQ3.1)

When implementing a change recommendation engine in an

industrial process, the time needed to generate recommen-

dations is an important factor to consider when it comes to

industry adoption, as a slow tool can deter users from frequent

use.

In Section VII-B we found that ROSE and TARMAQ

executed in a fraction of a second on average, while the

SVD algorithm had an average execution time of 17 seconds.

We observe that SVD’s execution time is unsatisfactory in

a change-recommendation context, although it is certainly

acceptable in other applications, such as for test-selection.

We also argue that the difference in execution time between

ROSE and TARMAQ is significant only statistically, not

practically, and to this end both can be considered as providing

real-time feedback.
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Fig. 7. Distribution of average precision on seen and unseen queries

TABLE V
TOP10-TRUEPOSITIVE: THE PERCENTAGE OF TIMES THAT EACH

ALGORITHM PREDICTS AT LEAST ONE CORRECT FILE IN THE TOP 10 ON

EITHER SEEN OR UNSEEN QUERIES

seen unseen

ROSE 92% 0%
SVD 56% 50%

TARMAQ 92% 65%

C. Performance on seen and unseen queries (RQ3.2-4)

In addition to investigating the overall performance, we also

considered performance on seen and unseen queries separately.

The discussion in Section VII-C and Section VII-D states

the best-performing algorithm based on average precision, but

does not give sufficient insights on the performance of each

algorithm in practice. While the average precision is a good

evaluator of the complete recommendation list produced by

the algorithms, for this purpose, we introduce a quantification

of practical use, which is easier to interpret than average

precision. We define top10-truepositive as the number of times

an algorithm correctly predicts at least one file in the top-10 of

its recommendation list. The top10-truepositive metric, given

in percentage, is shown in Table V.

We see that in over 90% of cases, at least one correctly

predicted file will be in the top 10 for ROSE and TARMAQ

on seen queries. For SVD the same is true only in about 50%

of cases.

For all algorithms, performance measured by top10-

truepositive degrades on unseen queries, which should be

expected; however, given the average precision degradation

we also saw in Section VII-D. TARMAQ and SVD are closer

in performance here, but for about every 6th query, TARMAQ

will predict at least one correct file in the top 10 that SVD

did not catch.

D. Performance of algorithms on individual systems (RQ3.5)

In our final evaluation in Section VII-F we looked at each

algorithm’s performance on the individual software systems.

Here we found that, with the exception of linux, TARMAQ

performed best on all systems. Finally, we remark the diversity

expressed by the different system in terms of number of unique

files, size of the average transaction, time between first and

last transaction in the history, and the number of different

languages used (Table I), and we argue that TARMAQ’s

performance on such diverse systems is satisfactory.

However, in the future we plan to achieve a better un-

derstanding of how individual software system characteristics

might affect TARMAQ, especially in the case of linux where

SVD achieves higher average precision than TARMAQ. A

possible explanation for this result is the relatively short time

frame of the history used with linux, where the older commits

are only a month old. Future work will consider if this short

time frame could cause TARMAQ to assign low confidence

and support to correct association rules.
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E. Threats to Validity

We identified a set of threats that could affect the construct,

internal, and external validity of our experimental results.

1) Threats to Construct Validity: One main threat could

negatively affect the extent to which our experimental design

measures the effectiveness of TARMAQ for the purpose of

generating change recommendations.

Using Evolutionary Coupling for Software Change Impact

Analysis: The main underlying assumption behind our exper-

imental design is that evolutionary coupling infers meaningful

dependencies from the transaction histories, which can in turn

be used to generate effective change recommendations. While

this has not been proven on a universal basis, research in the

field showed that evolutionary coupling is an effective strategy

for software change impact analysis (Section IX).

2) Threats to Internal Validity: One main threat could neg-

atively affect the conclusions on the cause-effect relationships

derived from the experimental results.

Algorithms implementation: We compared the effectiveness

of TARMAQ to that of the most commonly used alternatives

for deriving change recommendations based transaction his-

tory, namely ROSE and SVD. However, we could not find

publicly available implementations of these algorithms, and we

re-implemented them based on the specification in the papers

where such algorithms were introduced [30, 20]. In particular,

we implemented the calculation of the decomposition matrices

of SVD using standard linear algebra libraries, which ensure

number overflows are properly avoided. Repeated executions

on abstract examples show that our implementations of TAR-

MAQ, ROSE and SVD are correct.

3) Threats to External Validity: Four main threats could

negatively affect the generalizability of the conclusions drawn.

Variation in software systems: We validated TARMAQ

in two industrial systems from our user partners, and four

large open source systems (Section VI-A). These systems

considerably vary in size and frequency of transactions, and

have been selected in order to investigate the effectiveness of

TARMAQ in a variety of software systems. However, even

though our selected software systems display good variation,

we very likely have not captured all variations.

Query Generation Process: When generating queries from

the systems histories, we removed transactions larger than

30 files that could contain dependent files (Section VI-C).

However, as mentioned earlier, similar experimentation in the

literature does not consider these large transactions, because

on average they are likely to contain for the largest part

unrelated files which would introduce noise when inferring

dependencies [30].

Incomplete data from our industrial partners: We were

not able to include the full history of transactions in the

Kongsberg Maritime system. This is because such transactions

were parsed from semi-structured free-text fields, which in a

small number of cases contained incomplete data. However,

the transactions we excluded for this reason constitute less

than 0.05% of the total history of the KM system.

Length of history: We evaluated all algorithms using the

last 10000 commits from each software system, rather than the

entire available history. While this ensures consistency over the

different systems, the included length might have also affected

our evaluation of seen and unseen queries. We had to limit the

number of commits for two reasons. (1) This was the number

of commits provided to us by our industry partners, and we

wanted to be consistent to this number also for the open-

source systems. (2) For the SVD algorithm, the overhead for

generating singular value decompositions of large co-change

matrices proved to be very high, and we saw the need to limit

the number of commits to keep experiment execution times to

a manageable level.

IX. RELATED WORK

We distinguish related work on association rule mining,

change impact analysis, evolutionary coupling, and mixed

approaches.

Association Rule Mining: Since Agrawal et al’s seminal

paper introducing the concept [1], many techniques have been

proposed, generally aimed at improving execution and mem-

ory efficiency. The most widely known include Apriori [2],

which uses an efficient pre-computation of rule generation

candidates, Eclat [27], which partitions the search space into

smaller independent subspaces that can more efficiently be

analyzed, and FPGrowth [11], which uses a compact tree

structure (the FPtree) to encode the database and enable

frequent patterns mining without candidate generation. All

these apply frequent pattern mining on the complete dataset.

A refinement is brought by so called targeted association

rule mining techniques, which focus the generation of rules

on a particular query supplied by the user [23, 10, 16].

These techniques filter transactions that are not related to the

query from the database used for rule generation, enabling a

drastic reduction of execution time [23]. Furthermore, these

approaches are very suitable for evolving data like software

change histories, because association rules are generated on

a per-query basis, and are always “up-to-date” with the latest

repository status. A more detailed discussion of advances in

pattern mining is outside the scope of this paper. For more

details, we refer to a recent survey by Silva et al. [21].

Change Impact Analysis: Zimmerman et al. introduce

ROSE [30], the work most closely related to ours. ROSE

applies targeted association rule mining to the problem of de-

riving developer change recommendations for a user specified

query. It uses constraints to filter out transactions that do not

contain any of the files of the query. The same constraint is

used to generate only rules whose antecedent contains all the

files in the query. As discussed in Section IV, the downside of

this approach is that ROSE generates no rules if no transaction

in the history is a superset of the query.

Ying et al. [26] describe a technique that mines frequent

patterns in the change history of a system to recommend po-

tentially relevant source code to a developer that is performing

a software maintenance task. Their algorithm uses a FPtree

structure to efficiently represent the set of files frequent in
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the history [11]. Similar to ROSE, this algorithm generates no

rules if no transaction in the history is a superset of the query,

i.e. it suffers from the limitation discussed in Section IV.

Sherriff et al. [20] present an approach to change recommen-

dation that identifies couplings of related files using a SVD of

the co-change matrix. This matrix encodes the number of times

any two files changed in the same transaction. This algorithm

does not suffer from the limited applicability discussed in

Section IV, but it is rather computationally expensive, as

demonstrated by the results of our empirical evaluation (Sec-

tion VII). Moreover, the SVD has to be recomputed after an

update of the change history.

Evolutionary Coupling: There is a body of work on

identifying evolutionary coupling (also referred to as logical

coupling). All these have in common that they are based

on some measure of co-change. Example measures include

course-, and fine-grained co-change information [7, 3, 19],

code-churn [8], and interaction with an IDE [28].

Gall et al. used release information to detect logical cou-

pling between 20 releases of a large Telecommunication

Switching System [7]. They later continued this analysis to

discover architectural weaknesses in source code (e.g., amount

of modularization) [8]. The coupling were primarily found

through analyzing sequences of releases in which modules

were changed together. Furthermore, couplings were also

identified on a class level through analyzing when and who

(author/date) that made class changes.

Hassan and Holt present several heuristics for predicting

change-propagation/ripple effects that result from source code

changes [12]. In addition to evolutionary coupling (described

as “historical co-changes” in the paper), three other heuristics

were also investigated, whereas one used static dependencies

such as Call/Use/Define relations, and another used code-

layout to identify couplings. Of all 4 heuristics, the use of

evolutionary couplings gave the highest recall score, meaning

it correctly identified the most couplings (avg. 87%).

Jafar et al. [13] perform an exploratory study on co-changes

at file level granularity. They introduce two timing related

patterns for co-changes that can help to more accurately mine

transactions in a change history.

Mixed Approaches: Hipikat [6] integrates various developer

related artifacts, such as change history, email discussions

and issue tracking systems. Vector-based information retrieval

techniques are used to mine relations between artifacts. Ad-

ditional relations are created using heuristics, such as the

matching of issue IDs in commit messages to issue reports

in bugzilla. Hipikat uses this cross-indexed project memory to

recommend relevant artifacts for a task , either directly from a

query, or automatically based on a developer’s working context

(e.g., documents open in an IDE).

Kagdi et al. [15] combine history based evolutionary cou-

pling with so called conceptual coupling which is derived

using information retrieval techniques on a single version

(i.e, a release) of a software system. They show that the

combination of these two techniques provides statistically

significant improvements in accuracy over the individual tech-

niques. Mondal et al. [17] combine association rule mining

with change correspondence, a measure for the extent to which

identifiers and constants in co-changed entities overlap. This is

a lightweight form of conceptual coupling, which is then used

to prioritize association rules, as a more source-code aware

version of the standard support and confidence measures.

Although originally developed for other contexts, there is no

reason why these orthogonal measures and additional sources

could not be used in combination with the technique we

propose in this paper, and achieve similar benefits as in their

original application.

X. CONCLUDING REMARKS

With new techniques and data-sources, progress is being made

on improving Change Impact Analysis (CIA). The use of evo-

lutionary coupling as a driver of CIA is a promising direction

that can address some caveats of traditional static/dynamic

dependency analysis. In particular, the use of evolutionary

coupling is inherently language agnostic, and in general can

potentially find couplings where static/dynamic approaches

cannot find a coupling because of a lack of explicit data/control

flow. This is a considerable advantage given the increasing

heterogeneity of today’s software systems.

In this paper we present an algorithm (TARMAQ) for CIA

using a generalized analysis of evolutionary coupling with

respect to some change-scenario (changed files). The use of

TARMAQ for CIA promises a best effort analysis of the evolu-

tionary coupling given any change-scenario. The contributions

of this paper are the following: (1) We provided a classification

of two different change-scenarios for change impact analysis.

(2) We provided an empirical evaluation of the frequency

of these change-scenarios. (3) We introduced an algorithm

(TARMAQ) that can analyze the evolutionary coupling of

any change-scenario, and therefore can support CIA for most

change-scenarios. (4) We provided a comprehensive evaluation

of TARMAQ on two industrial software systems from our

industry partner and four open source systems.

Directions for Future Research: In future work we would

like to address the following: (1) We plan to conduct a larger

empirical evaluation of TARMAQ, both in the number of

software systems and in the number of evaluated factors. We

would, for example, like to explore the effect of history-

size and query-size on performance, and attempt to classify

software systems in terms of how applicable our approach

might be. (2) We also plan to explore methods for further

increasing overall performance, and especially performance on

unseen queries. (3) Third, we hope to directly compare CIA

based on evolutionary coupling with static/dynamic depen-

dency analysis. (4) Next we plan to apply TARMAQ on other

problems, for example test-selection. (5) Finally, future work

will explore existing alternative interestingness measures that

might replace support/confidence, and see how they perform.
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