
Exploring the Effects of History Length and Age
on Mining Software Change Impact
Leon Moonen∗, Stefano Di Alesio∗, Thomas Rolfsnes∗ and Dave W. Binkley§

∗Simula Research Laboratory, Oslo, Norway §Loyola University Maryland, Baltimore, Maryland, USA
leon.moonen@computer.org, {stefano,thomgrol}@simula.no, binkley@cs.loyola.edu

Abstract—The goal of Software Change Impact Analysis is to
identify artifacts (typically source-code files) potentially affected
by a change. Recently, there is an increased interest in mining
software change impact based on evolutionary coupling. A
particularly promising approach uses association rule mining
to uncover potentially affected artifacts from patterns in the
system’s change history. Two main considerations when using
this approach are the history length, the number of transactions
from the change history used to identify the impact of a change,
and history age, the number of transactions that have occurred
since patterns were last mined from the history. Although history
length and age can significantly affect the quality of mining
results, few guidelines exist on how to best select appropriate
values for these two parameters.

In this paper, we empirically investigate the effects of history
length and age on the quality of change impact analysis using
mined evolutionary couplings. Specifically, we report on a series
of systematic experiments involving the change histories of two
large industrial systems and 17 large open source systems. In
these experiments, we vary the length and age of the history
used to mine software change impact, and assess how this affects
precision and applicability. Results from the study are used
to derive practical guidelines for choosing history length and
age when applying association rule mining to conduct software
change impact analysis.

Index Terms—change impact analysis, evolutionary coupling,
association rule mining, parameter tuning.

I. INTRODUCTION

When software systems evolve, the interactions in the source
code grow in number and complexity. As a result, it becomes
increasingly challenging for developers to predict the overall
effect of making a change to the system. Change Impact
Analysis [1] has been proposed as a solution to this problem,
aimed at identifying software artifacts (e.g., files, methods,
classes) affected by a given change. Traditionally, techniques
for change impact analysis are based on static or dynamic
analysis, which identify dependencies, for example, methods
calling or called by a changed method [2, 3, 4]. However,
static and dynamic analysis are generally language-specific,
making them hard to apply to modern heterogeneous software
systems [5]. In addition, dynamic analysis can involve consid-
erable overhead (e.g., from code instrumentation), while static
analysis tends to over-approximate the impact of changes [6].

To address these challenges, alternative techniques have
been proposed that identify dependencies through evolutionary
coupling [7, 8, 9, 10]. In essence, evolutionary coupling

exploits a developers inherent knowledge of the dependencies
in the system, which manifest themselves through commit
comments, bug reports, context switches in IDEs, and so
on [8]. These couplings differ from those found through static
and dynamic analysis, because they are based on how the
software system has evolved over time, rather than how system
components are interconnected.

This paper considers historical co-change between artifacts
as the basis for uncovering evolutionary coupling. Known
techniques [10, 11, 12, 13] for mining evolutionary couplings
from artifact co-changes build on association rule mining (or
association rule learning) [14], and differ in the way that the
association rules are generated from the history. Nevertheless,
key to all such techniques is the history used to learn from.
There are two main factors related to the history that im-
pact the mined rules: (1) the history length, the number of
transactions in the history considered while mining co-change
patterns, and (2) the history age, the number of transactions
that have occurred since these patterns were mined. The
resulting rules directly affect the quality of any change impact
analysis based on mined evolutionary coupling. However,
while reviewing the literature, we found that the effects of
history length and age on mined association rules have not
been systematically studied. We address this shortcoming.
Contributions: This paper presents a series of systematic
experiments using the change histories of two large indus-
trial systems and 17 large open source systems. The study
makes two key contributions: (1) we investigate the extent to
which history length and age affect the quality (formalized
in Section IV-F) of the change impact sets derived via as-
sociation rule mining, and (2) we derive practical guidelines
for selecting an appropriate system-specific value for history
length and for determining at what age a model has sufficiently
deteriorated to benefit from rebuilding. The guidelines enable
a team of engineers to best exploit association rule mining for
change impact analysis in the context of their project.
Overview: The remainder of this paper is organized as
follows: Section II provides background on mining evolu-
tionary coupling. Section III presents our research questions.
Section IV describes the setup of our empirical investigation,
whose results are presented in Section V. Finally, Section VI
presents related work, and then Section VII provides some
concluding remarks.

II. MINING SOFTWARE CHANGE IMPACT

We use historical co-change between artifacts to uncover
evolutionary coupling. Such co-change data can, for example,
be found as revisions a project’s version control system [15],
as fixes to a bug in an issue tracking system [16], or by instru-
menting the development environment [17]. Most techniques
that uncover evolutionary coupling from co-change data build
on association rule mining, an unsupervised learning technique
to discover relations between entities of a dataset [14].

Association rules are implications of the form A → B,
where A is referred to as the antecedent, B as the consequent,
and A and B are disjoint sets. For example, consider the
classic application of analyzing shopping cart data: if multiple
transactions include bread and butter then a potential associa-
tion rule is bread → butter, which can be read as “if you buy
bread, then you are likely to buy butter.”

While mining evolutionary coupling from co-change data,
we consider the entities to be the files of the system1 and
the collection (history) T of transactions, to be a list of
past commits from a versioning system. More specifically, a
transaction T ∈ T is the set of files that were either changed
or added while addressing a given bug fix or feature addition,
hence creating a logical dependence between the files [18].

As originally defined [14], association rule mining generates
rules that express patterns in the complete data set. However,
some applications can exploit a more focused set of rules.
Targeted association rule mining [19] focuses the generation of
rules by applying a constraint. An example constraint specifies
that the antecedent of all mined rules belongs to a particular
set of files, which effectively reduces the number of rules that
need to be created. This reduction drastically improves the
execution time of rule generation [19].

When performing change impact analysis, rule generation
is constrained based on a change set, also known as the
query. For example, the set of modified files since the last
commit. In this case, only rules with at least one changed
entity in the antecedent are created. The resulting impacted
files are those found in the rule consequents. Thus, the output
of change impact analysis (the impact set) is the set of files
that are historically changed alongside the elements of the
change set. Given a change set {a, b, c}, the algorithms by
Zimmermann [11] and Ying [12] only uncover those files
that are changed together with all files in the query {a, b, c}.
This strict constraint tends to yield a more precise impact set,
but fails to produce an answer more often than not [10]. In
contrast, Kagdi’s algorithm [13] uncovers any file that was
co-changed with a, or b, or c. This lenient constraint enables
giving more answers, which are, however, potentially noisy.
Finally, in earlier work we introduced TARMAQ, which reports
the files that have co-changed with largest possible subset of
the query, thereby dynamically balancing the precision of a
complete match with the ability to give more answers [10].

1 Other levels of granularity are possible, and our consideration of the file
level is without loss of generality as our algorithms are granularity agnostic: if
fine-grained co-change data is available (or computable), the same algorithms
will relate methods or variables just as well as files.

III. RESEARCH QUESTIONS

It is regularly surmised in mining literature [11, 20, 21] that
learning from too short or too long a history results in a
suboptimal outcome, respectively because not enough knowl-
edge about the system can be uncovered, or because outdated
information introduces noise. We aim to better understand
these effects via the following research questions:
RQ 1 What influence does history length have on impact
analysis quality?

This is refined in the following subquestions:
RQ 1.1 Can we identify a lower bound on the history length
that is needed to learn enough about the system to produce
acceptable impact analysis results?
RQ 1.2 Do we see a diminishing return in impact analysis
quality as history length increases?
RQ 1.3 Can we identify an upper bound on history length
where outdated knowledge starts to negatively affect our
analysis causing quality to decrease below acceptable levels?

A closely related aspect is history age, which we define
as the number of transactions that have occurred since the
most recent transaction of the history used to conduct the
analysis. History age basically tells us how long a model can
successfully be used to make predictions regarding a system.
Knowledge about the quality of impact analysis based on older
histories gives valuable input regarding the feasibility of an
incremental approach that reuses older association rules.
RQ 2 What influence does history age have on impact anal-
ysis quality?

Which is refined using the following subquestions:
RQ 2.1 Can we identify an upper bound on the history age
beyond which the generated model has grown too old and can
no longer produce acceptable impact analysis results?
RQ 2.2 Is there a point where impact analysis quality ceases
to deteriorate as history age increases?

Finally, we investigate the possibility of providing project-
specific advise for values of history length and history age:
RQ 3 Can we predict good values for history length and age
for a given software-system based on characteristics of its
change-history (such as the average size of transactions and
the number of developers)?

To ensure a complete understanding, we will initially inves-
tigate the effects of history length and age at a coarse level,
and progressively zoom in at finer levels of granularity for
areas of interest indicated by the coarse study.

IV. EMPIRICAL STUDY

We perform a comprehensive empirical study to assess the ef-
fects of history length and age on the quality of change impact
analysis through mined evolutionary coupling. As a reference
mining technique we use our previous work, TARMAQ, which
has proven to perform consistently better than the state-of-
the-art alternatives for change impact analysis [10]. The goal
of our study is to answer the research questions introduced

in Section III by controlling the history length and age while
mining change impact on several large software systems.

The remainder of this section details the design of our
empirical study and is organized as follows: in Section IV-A
we introduce the software systems included in the study.
Section IV-B describes the strategy we use to systematically
vary history length and age. In Sections IV-C to IV-E we
describe how we use targeted association rule mining to
generate change impact sets for a change set (referred to as the
query) of files. Finally, in Section IV-F we introduce the two
measures used to evaluate the quality of the change impact
sets generated via targeted association rule mining.

A. Subject Systems

To assess targeted association rule mining in a variety of
conditions, we selected 19 large systems having varying char-
acteristics, such as size and frequency of transactions, number
of files, and number of developers. Two of these systems come
from our industry partners, Cisco Norway and Kongsberg
Maritime (KM). Cisco Norway is the Norwegian division
of Cisco Systems, a worldwide leader in the production of
networking equipment. We consider their software product
line for professional video conferencing systems, developed
by Cisco Norway. KM is a leader in the production of
systems for positioning, surveying, navigation, and automation
of merchant vessels and offshore installations. We consider a
common software platform KM uses across various systems
in the maritime and energy domain.

The other 17 systems are well known open-source projects,
and are reported in Table I along demographics showing their
diversity. The table shows that the systems vary from medium
to large size, with up to 300 000 different files for one system,
and nearly 3 500 developers contributing to another. For each
system, we extracted the 50 000 most recent transactions
(commits). This number of transactions covers vastly different
time spans across the systems, ranging from almost 20 years
in the case of HTTPD, to a little over 10 months in the case
of the Linux kernel. We also report on six characteristics that
we expect may be useful for answering RQ3.

1) Number of Files in the history of the system;
2) Average Commit Size: the average number of files ap-

pearing in a transaction in the history of a system;
3) Number of Developers who committed at least one trans-

action in the history of a system;
4) Mode and Median Inter-Commit Time: the inter-commit

time is the time between two commits by the same
developer, measured as a number of commits;

5) Average and Median Commit Streaks: a commit streak
is the number of consecutive commits by the same
developer in the history of a system.

Finally, the last column shows the programming languages
used in each system, as an indication of heterogeneity.

B. History Length and Age

Given that the time span covered by 50 000 commits varies
considerably across the systems in our study, we choose to

express history length and age as a number of transactions,
rather than using calendar time. This sets the same baseline for
each system, enabling a meaningful comparison of the effects
of history length and age across systems.

We refer to a fixed combination of history length and age
as a scenario. In our coarse-grained study, we examine 24
scenarios pairing history lengths of 5 000, 15 000, 25 000, and
35 000 commits with ages of zero (no age), 1 000, 2 000, 3 000,
4 000 and 5 000 commits.

Preliminary results of the coarse-grained study highlighted
large variations in change impact analysis quality for small
length and age values, showing that the quality rapidly
decreases with history aging, while increasing with longer
histories. To zoom in on these areas, we conduct two additional
fine-grained studies in which we respectively investigate small
history lengths (for a fixed age of zero), and small ages
(for a fixed history length of 25 000 commits). In each of
the studies, we examine three intervals of progressively finer
granularity for the variable of interest: (a) from 0 to 2 000
commits by every 100 commits; (b) from 0 to 200 commits by
every 10 commits; (c) from 0 to 20 commits by every single
commit. Note that we skip history lengths of zero commits
because, trivially, no association rules can be mined from
an empty history Thus, we consider 60 scenarios for small
history lengths and age zero, and 63 scenarios for small ages
and a history of 25 000 commits. We refer to the fine-grained
collections of scenarios characterized by each of these ranges
as lengthX and ageX, where length and age specify the context
where the range is used, and X specifies the upper bound
of the range. For example, age20 represents the fine-grained
collection containing the scenarios with history length 25 000
and age in [0, 1, 2, . . . 20].

Finally, to investigate fine-grained variations on a larger
scale, we consider the collection length35k, which varies
history length from 100 to 35 000 commits in steps of 100
commits. We do not consider a similar interval for history
age, as the preliminary coarse-grained study did not show
significant variations in change impact analysis quality for age
values larger than about 2 000 commits.

C. Transaction Filtering
It is a common practice in association rule mining to filter the
history to remove transactions larger than a certain size [11, 12,
22, 23]. Filtering reduces noise by removing large transactions
that are likely not relevant for evolutionary coupling, such as
mass license updates or version bumps.

In previous work, we considered the effect of transaction
filtering size on the quality of change impact analysis using
association rule mining [24]. That study was conducted in a
similar setting as this paper, and found that filtering transac-
tions larger than eight items gave the best results. Therefore,
for each scenario, we mine association rules from a filtered
history containing transactions with at most eight items.

D. Query Generation and Execution
Conceptually, a query Q represents a set of files that a
developer changed since the last synchronization with the

TABLE I
CHARACTERISTICS OF THE EVALUATED SOFTWARE SYSTEMS (BASED ON OUR EXTRACTION OF THE LAST 50 000 TRANSACTIONS FOR EACH).

Nr. of Avg. History Nr. of Mode Median Avg. Median
Software System Files Commit (in yrs) Devs Inter- Inter- Commit Commit Languages used∗

Size Commit Commit Streak Streak

CPython 7725 2.70 11.97 159 0 0 5.97 4 Python (53%), C (36%), 16 other (11%)
Mozilla Gecko 8665 7.16 1.08 1047 0 11 2.67 1 C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git 3753 1.96 11.02 1404 0 0 2.22 1 C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop 2460 8.27 6.91 126 0 5 2.63 2 Java (65%), XML (31%), 10 other (4%)
HTTPD 1001 4.94 19.78 119 0 1 7.85 5 XML (56%), C (32%), Forth (8%), 19 other (4%)
IntelliJ IDEA 6269 3.83 2.6 194 0 4 2.58 1 Java (71%), Python (17%), XML (5%), 26 other (7%)
Liferay Portal 14479 8.95 0.86 212 0 2 6.25 2 Java (71%), XML (23%), 12 other (4%)
Linux Kernel 2641 2.15 0.76 3256 0 0 3.10 1 C (94%), 16 other (6%)
LLVM 2560 4.08 4.15 530 0 6 3.17 2 C++ (71%), Assembly (15%), C (10%), 16 other (6%)
MediaWiki 1225 5.43 9.88 541 0 1 1.65 1 PHP (78%), JavaScript (17%), 11 other (5%)
MySQL 4258 6.18 10.35 274 0 0 36.90 2 C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP 2129 4.03 10.8 471 0 0 3.35 2 C (59%), PHP (13%), XML (8%), 24 other (20%)
Ruby on Rails 1063 2.55 11.42 3497 0 1 0.99 0 Ruby (98%), 6 other (2%)
RavenDB 2924 6.55 8.59 259 0 0 2.84 1 C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion 6559 2.96 13.99 91 0 1 5.95 4 C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit 28189 13.80 3.27 393 0 12 2.68 2 HTML (29%), JavaScript (30%), C++ (26%), 23 other (15%)
Wine 8234 2.53 6.56 517 0 0 3.15 1 C (97%), 16 other (3%)
Cisco Norway 6497 6.44 2.35 - - - - - C++, C, C#, Python, Java, XML, other build/config
Kongsberg Maritime 3511 5.08 15.97 - - - - - C++, C, XML, other build/config
∗ languages used by open source systems are from http://www.openhub.net, percentages and demographic data for the industrial systems are not disclosed.

version control system. Recall that the main assumption behind
evolutionary coupling is that files that frequently change
together are likely to depend on each other. The key idea
behind our evaluation is to sample a transaction T from the
history, and randomly partition it into a non-empty query Q
and a non-empty expected outcome E

def
= T \ Q. This allows

us to evaluate to what extent our change impact analysis
technique is able to estimate E from Q for a given scenario.

We take a representative sample of 660 transactions2 from
each system history, and for each of those transactions we
randomly generate a single query. Note that, in order to
generate non-empty queries, we only sample from transactions
with at least two files. The resulting 660 queries are executed
once for each of (a) the 24 scenarios in the coarse-grained
study, (b) the 123 scenarios in the fine-grained studies, and
(c) the 350 scenarios in the length35k study. This setup yields
a total of 660 · (24 + 123 + 350) = 328 020 data points for
each of the 19 systems, where each data point is the estimated
impact set for a given query (6.23 million data points in total).

E. Estimating the Impact of a Change

All queries are executed using TARMAQ, the rule min-
ing algorithm we introduced in previous work [10]. Recall
from Section II that, in the context of targeted association
rule mining, executing a query Q entails the generation of a
set of association rules. The impact set of Q is the list of
consequents of the rules generated for Q, where such rules
are ranked according to their interestingness. While a number
of interestingness measures have been defined over the years,
in our study we rank association rules based on support and
confidence [14]. The support of a rule is the percentage of
transactions in the history containing both the antecedent and

2 Sampling 660 transactions from a population of 50 000 transactions is
sufficient to have a 99% confidence level with a 5% confidence interval.

the consequent of a rule. Intuitively, high support suggests
that a rule is more likely to hold because there is more
historical evidence for it. On the other hand, the confidence
of a rule is the number of historical transactions containing
both the antecedent and the consequent divided by the number
of transactions only containing the antecedent. Intuitively, the
higher the confidence, the higher the chance that when items in
the antecedent of a rule change, the items in the consequent
also change. We configure TARMAQ to rank rules based on
support, breaking ties based on confidence. This strategy has
been applied in several association rule mining approaches for
software change impact analysis [11, 12, 22, 23]. Note that
we consider only the largest interestingness score for each
consequent. This means that, for the purpose of this study, we
do not consider rule aggregation strategies, such as those we
proposed in previous work [25].

F. Quality Measures

We empirically assess the quality of the change impact sets
generated using two measures, Average Precision (AP) and
Applicability.
Definition 1 (Average Precision) Given a query Q, its im-
pact set IQ, and expected outcome EQ, the average precision
AP of IQ is given by

AP(IQ)
def
=

|IQ|∑
k=1

P (k) ∗ 4r(k) (1)

where P (k) is the precision calculated on the first k items in
the list (i.e., the fraction of correct files in the top k files), and
4r(k) is the change in recall calculated only on the k−1th and
kth files (i.e., the number of additional correct items predicted
compared to the previous rank) [26].
As an overall performance measure for a scenario (i.e., for a
given history length and age) across all the systems, we use the

Mean Average Precision (MAP) computed over all the queries
executed using the scenario.

Average Precision is a standard measure commonly used
in Information Retrieval to assess the extent to which a list
of retrieved documents includes the relevant documents for
a query. However, when using association rule mining, it is
not always possible to generate such list. This can happen
for example when there are no transactions in the history
whose items changed at least once with an item in the query.
While this scenario is unlikely for long histories, the chance
of finding a previous transaction involving a file from the
query decreases as the history length shortens. Therefore, we
define Applicability as the percentage of queries for which an
impact set can be generated (i.e., where the history contains
transactions involving items from the query).

V. RESULTS AND DISCUSSION

This section presents the results of the coarse-grained and
fine-grained analysis of history length and age described
in Section IV. In particular, the results of the coarse-grained
study motivate two fine-grained studies: (1) the impact of
history length at the fixed age zero, and (2) the impact of
history age for the fixed history length 25 000.

Note that one challenge that shorter history lengths bring
is a higher likelihood that for a given query no other commit
from the history includes any files from the query. In such
cases TARMAQ is not applicable as it is unable to generate an
impact set. While it is possible to assign an AP of zero to such
cases, doing so is harsh because TARMAQ can correctly inform
the user that it is not applicable. From a user perspective,
this is substantially better than an incorrect impact set (where
AP is truly zero). To account for this, we report three things:
applicability, MAP for applicable queries, the value of MAP
for only applicable queries, and overall MAP, the value of
MAP computed using all queries including those to which
TARMAQ is not applicable. In the following, we perform
statistical analysis on the MAP for applicable queries (simply
referred to as MAP in the tables).

A. Coarse-grained Study

Table II presents the results of an ANOVA explaining the MAP
values using the data of the coarse-grained study. In addition
to history length and age, we include as explanatory variables
their interaction (age : history length) and the subject system.
The latter explanatory variable allows the statistical model to
account for inter-system variations.

TABLE II
ANOVA RESULTS FOR THE COARSE-GRAINED STUDY

Explanatory Variable F-value p-value

age 611.36 < 0.0001
history length 178.61 < 0.0001
subject system 929.64 < 0.0001
age : history length 4.44 < 0.0001

0.
20

0.
25

0.
30

0.
35

0.
40

History Length by Age

History Length

M
AP

5000 15000 25000 35000

 Age

0
1000
2000
3000
4000
5000

Fig. 1. Interaction plot of Age by History Length.

With extremely small p-values and F-Values substantially
larger than one, all four explanatory variables are highly sta-
tistically significant. The residuals (not shown) are reasonably
normal with slightly elongated tails. Recall from Section IV-D
that we collect over 300 000 data points for each subject
system. This large sample size is sufficient to overcome
the minor difference from a normal distribution, especially
considering ANOVA’s resilience to non-normality given a large
data set. As a precaution, Kruskal-Wallis’ nonparametric test
was used to confirm the significance findings of the ANOVA.
Of the four variables, the interaction has the weakest impact,
as shown the relatively small F-value. This means that there is
a small variation in the impact of history length depending on
the age, which is visible as the different slopes of the lines in
the interaction plot shown in Figure 1. This graph also shows
that the MAP values for age zero are considerably higher than
those of the other ages, which are bunched relatively close
together. The gap going from age zero to age 1000 is the
motivation for the fine-grained study zooming in on the smaller
ages.

Table III reports Tukey’s Honest Significant Difference
(HSD) test for the ANOVA of Table II applied to history
length and age. Tukey’s test partitions values of history length
and age in groups in such a way that values belonging to
the same group do not yield statistically significantly different

TABLE III
TUKEY’S HSD FOR HISTORY LENGTH AND AGE

History length
Length MAP Group
35000 0.322 a
25000 0.318 a
15000 0.312 b

5000 0.285 c

History Age
Age MAP Group

0 0.372 a
1000 0.298 b
2000 0.289 c
3000 0.283 cd
4000 0.276 de
5000 0.270 e

0%

25%

50%

75%

100%

10000 20000 30000
→ History Length

Applicability

overall MAP

MAP for applicable queries

350005000

Fig. 2. Coarse-level study of history length

MAP values. The test suggests three main conclusions. First,
there are significant differences between many of the levels of
each variable. Second, for history length, the best performance
is attained by the two larger length values, 35 000 and 25 000.
We use the shorter of these, 25 000, in the fine-grained age
study (Section V-B2) because it allows us to sample queries
from the larger space of 25 000 commits out of the 50 000
extracted for each subject system (Section IV-A). Finally, for
history age, the best performance is attained by age zero,
which we hence use in the fine-grained study of history length
(Section V-B1). Both the graphs and Tukey’s HSD indicate
that very recent commits have a strong influence on the ability
to predict change impacts. These three findings motivated our
fine-grained study of small history length and age.

Focusing on the age zero data only, Figure 2 shows the
applicability of TARMAQ, along with the overall MAP and
the MAP for applicable queries. The applicability of TAR-
MAQ follows the expected trend: the algorithm grows more
applicable as the history length increases. The results of the
coarse-grained study also suggest that the overall MAP and
the MAP for applicable queries are very similar. However,
intuition suggests that the difference between the two will
increase as the history length shortens.

B. Fine-grained Study

The coarse-grained analysis motivates the study of small
history lengths and ages. The results of these studies are
presented and discussed in the following two subsections.

1) History Length: An ANOVA for the fine-grained study
of history lengths using age zero finds substantially the same
results as the coarse-grained analysis. Table IV shows the re-
sults of Tukey’s HSD for the scenario collections length2000,
length200, and length20. The results show that statistically sig-
nificantly higher MAP values are produced by short histories.
In particular, in the first column the scenario with a history
length of 100 yields statistically significantly higher MAP than
all the other scenarios. The same trend is seen in the second
column, where longer history yields a strictly decreasing MAP
value. Finally, the third column shows that histories of lengths
as short as 1 or 2 commits are very effective in estimating the

TABLE IV
TUKEY’S HSD FOR length2000, length200, AND length20

length2000
Len MAP Grp
100 0.408 a
200 0.389 b
300 0.382 bc
400 0.379 bc
600 0.376 bc
500 0.375 bc
700 0.373 c

1000 0.373 c
2000 0.372 c
800 0.372 c
900 0.372 c

1100 0.371 c
1600 0.371 c
1700 0.371 c
1900 0.370 c
1500 0.370 c
1400 0.370 c
1300 0.370 c
1800 0.370 c
1200 0.370 c

length200
Len MAP Group

10 0.481 a
20 0.448 b
30 0.424 c
40 0.413 cd
50 0.407 cde
60 0.400 def
70 0.399 defg
80 0.396 defgh
90 0.392 efghi

100 0.388 fghij
110 0.385 fghij
120 0.384 fghij
130 0.384 ghij
140 0.382 hij
150 0.380 ij
160 0.379 ij
170 0.377 ij
180 0.377 ij
190 0.376 j
200 0.375 j

length20
Len MAP Group

1 0.601 a
2 0.571 a
3 0.540 b
4 0.530 b
5 0.516 bc
6 0.505 cd
7 0.498 cde
8 0.489 def
9 0.483 defg

10 0.476 efgh
11 0.472 fghi
12 0.470 fghi
13 0.468 fghi
14 0.465 ghi
15 0.464 ghi
16 0.459 hi
17 0.458 hi
18 0.457 hi
19 0.455 hi
20 0.452 i

change impact set, while longer histories up to 20 commits are
progressively less effective. Because each column represents
a separate sample of the commits, the MAP values in each
column should not be directly compared, only the trends are
comparable.

This data suggests that very short histories yield the best
results and furthermore that the extent to which files contained
in past transactions are related to the files in a query progres-
sively decreases as history length increases. In other words
older transactions are more likely to contain files unrelated
to a query. However, an explanation for this seemingly odd
behavior is found in the considerably lower applicability of
TARMAQ as the history length shortens. This trade-off can be
seen in Figure 3, which reports the applicability, MAP, and
MAP for applicable queries in the three fine-grained studies
on the history length. In particular, across all granularities,
applicability and MAP show an increasing trend, while the
MAP for applicable queries shows a decreasing trend. This is
expected because, the longer the history, the higher the chance
that at least one past transaction contains files related to the
query, which raises applicability and (overall) MAP.

The trends shown in Figure 3 led to the collection length35k,
which is shown in Figure 4. The analysis of this figure,
combined with the results of Tukey’s HSD, allow us to answer
RQ1 as follows.
RQ 1 What influence does history length have on impact
analysis quality?
RQ 1.1 Can we identify a lower bound on the history length
that is needed to learn enough about the system to produce
acceptable impact analysis results?

Given the leveling off of applicability as history length
grows, our analysis suggests that 25 000 commits is the point
at which there is sufficient history to learn enough about
the system to produce acceptable impact analysis results.
Of course those willing to tolerate lower applicability, could
consider shorter histories.

0%

25%

50%

75%

100%

500 1000 1500 2000
→ History Length

Applicability

MAP for applicable queries

overall MAP

100

0%

25%

50%

75%

100%

50 100 150 200
→ History Length

MAP for applicable queries

overall MAP

Applicability

10
0%

25%

50%

75%

100%

5 10 15 20→ History Length

MAP for applicable queries

overall MAP

Applicability

1

length2000 length200 length20

Fig. 3. The fine-grained study’s three history-length scenario collections showing the inverse relation between MAP and applicability.

0%

25%

50%

75%

100%

1 10000 20000 30000
→ History Length

MAP for applicable queries

Applicability

overall MAP

35000

Fig. 4. Results from the large-scale fine-grained investigation of length35k.

RQ 1.2 Do we see a diminishing return in impact analysis
quality as history length increases?

In short, Yes. Our analysis shows that TARMAQ’s perfor-
mance consistently increases for histories up to 15 000 com-
mits, and then levels off and remains stable for longer histories
(Figure 4). Therefore, we identify the point of diminishing
return as 15 000 commits.
RQ 1.3 Can we identify an upper bound on history length
where outdated knowledge starts to negatively affect our
analysis causing quality to decrease below acceptable levels?

No, our analysis of histories up to 35 000 transactions does
not show any evidence of performance degrading because of
older outdated commits. Future work will consider histories
longer than 35 000 transactions.

2) History Age: Parallel to Table II, the ANOVA for the
three age collections (not shown), finds age and subject system
to be highly statistically significant. Table V shows the top
entries of Tukey’s HSD for MAP in the collections age2000,
age200, and age20. The remaining scenarios all appear in age
order, and show considerable group overlap in the middle,
similar to the center column of Table IV. Note that, in all three
collections, the scenario with age zero performs statistically
better than that of the next smallest age. While the gap in
MAP gets smaller as the ages in the scenarios get closer, the
MAP difference is significant even when going from an age of
one commit to an age of four commits in the age20 collection.

Figure 5 shows the trends for applicability, overall MAP,
and MAP for applicable queries. Across the collections, the
drop off from the scenario characterized by age zero to the next
age is visually evident, although it clearly gets less prominent
from age2000 to age200, and finally to age20. Similar to RQ1,
these charts and Tukey’s HSD enable us to answer RQ2.
RQ 2 What influence does history age have on impact anal-
ysis quality?
RQ 2.1 Can we identify an upper bound on the history age
beyond which the generated model has grown too old and can
no longer produce acceptable impact analysis results?
Such a bound is a function of ones tolerance for lost precision,
which depends on the use and application of targeted associ-
ation rule mining for change impact analysis. Similar to the
length analysis (Section V-B1), the falloff in precision tends to
gradually narrow. However, the falloff is initially quite steep.
For example, in Table V the second entry shows a reduction of
12.5% for age2000, 8% for age200 and 3% for age20. When
using a 10% tolerance cutoff of the maximum achievable MAP
as an arbitrary maximal acceptable loss, the upper bound for
history age is 30 commits. In summary, we conclude there is
a bound on age for RQ 2.1, where the actual value for this
bound is a function of the user’s tolerance and experience.
RQ 2.2 Is there a point where impact analysis quality ceases
to deteriorate as history age increases?
Similar to RQ 2.1, the point of diminishing deterioration is
subjective, as it depends on the cutoff for the MAP values. Fol-
lowing RQ 2.1, we again use a 10% cutoff. The lowest MAP is
0.270, which is for age 5000 as shown in Table III. Using this
value, the target MAP value is 0.270 + 10% = 0.297, which,
according to the study of age2000 (not shown in Table V),
is crossed at age 1200. Thus, while the performance is
monotonically decreasing as age increases, it does reach a
point after which the remaining deterioration is not significant.

TABLE V
TOP ENTRIES (THROUGH THE FIRST ‘c’) FROM TUKEY’S HSD FOR

age2000, age200, AND age20

age2000
Age MAP Grp

0 0.376 a
100 0.329 b
200 0.322 c

age200
Age MAP Group

0 0.379 a
10 0.348 b
20 0.344 bc

age20
Age MAP Group

0 0.384 a
1 0.371 b
2 0.365 bc

0%

25%

50%

75%

100%

0 500 1000 1500 2000
→ History Age

Applicability

overall MAP

MAP for applicable queries

0%

25%

50%

75%

100%

0 50 100 150 200
→ History Age

Applicability

overall MAP

MAP for applicable queries

0%

25%

50%

75%

100%

0 5 10 15 20→ History Age

Applicability

overall MAP

MAP for applicable queries

age2000 age200 age20
Fig. 5. The fine-grained study’s three history-age ranges shown from coarsest to finest

Therefore, it is possible to find a point beyond which impact
analysis quality ceases to deteriorate significantly as history
age increases.

C. Project Characteristics

RQ3 aims to support a team of developers working on a
specific system by providing practical guidelines for selecting
an appropriate value for history length and for predicting
at what age a model has sufficiently deteriorated to need
rebuilding. To answer this research question, we predict the
values of history length and age by building two separate
linear regression models. In both cases, the set of explanatory
variables used are the system demographics reported in Ta-
ble I. In this way, the resulting regression models characterize
aspects of a system that affect change impact analysis using
evolutionary coupling. In both analyses, we omit the three
systems Hadoop, which has insufficient history, and Cisco and
KM for which we lack complete demographics. Similar to the
analysis in Section V-A, the regression analysis for history
length is performed using an age of zero, while the regression
analysis for age is performed with a history length of 25 000.

First, we consider the linear regression model for history
length, for which we compute the highest MAP for applicable
queries for each system. Note that, in most cases, several
history lengths produce MAP values that show no statistical
difference. To simplify our analysis, rather than modeling a set
of MAP values, we use the single history length yielding the
highest MAP value as the explanatory variable in the model.

We then fit a linear model to the data using R’s lm
function starting with all explanatory variables and applying
backward elimination. The elimination phase removes the least
statistically significant term, and then regenerates a new model.
For example, in the initial model constructed the median inter-
commit time has the highest p-value of 0.63. The elimination
step removes this variable and then rebuilds the model. This
process is repeated until only significant variables remain. The

TABLE VI
FINAL LINEAR REGRESSION MODEL PREDICTING HISTORY LENGTH

Explanatory Variable Estimate p-value
Intercept 33974.1 < 0.001
Number of Files (in 1000’s) 208.4 0.012
Average Commit Size -3958.9 0.034
Model p-value: 0.0319

final model for history length is shown in Table VI, which
yields the following prediction:

History Length = 33974.1

+ 208.4×Number of Files (in 1000 ′s)

− 3958.9×Average Commit Size

It would be interesting to understand why the other explanatory
variables have no significant impact. Unfortunately statistical
modeling fails to uncover causation. We test the reasonable-
ness of this model using the two systems with the smallest
and the largest demographic values, namely Git and WebKit
(other systems fall in between these two). For Git, the model
recommends a history length of 26 902, while for WebKit, the
model recommends a history length of 37 414. These values
are consistent with our analysis in Section V-A, which finds
that lengths of 25 000 and 35 000 are the best performing.

Finally, it is interesting to consider likely causal relations
that connect the explanatory variables found in the final model
to the response variable (i.e., history length). First, we find
that as the number of files increases, so does the predicted
history length. Indeed, the more files a system has, the further
apart commits containing files relevant to a query are likely to
be, and hence a larger history is required. However, commits
are not uniformly spaced because engineers tend to work on
different areas of the code at different points in time, and
thus this effect is not as strong as it might be. Nonetheless,
the effect has a statistically and practically significant impact.
Second, the coefficient estimate associated with average com-
mit size, is negative, thus indicating an inverse relationship. In
other words, as the average commit size increases, the required
history length decreases. A likely explanation for this relation
is that larger commits include more information per commit.
For example, to conclude that changing a impacts b and c
can be derived from the single size-three commit {a, b, c}, but
requires two size-two commits: {a, b} and {a, c}.

The second part of RQ3 looks at predicting how old the
history can grow before it needs to be updated with the latest
commits. In order to do so, we first define a set of MAP
levels indicating that the history is too old. Specifically, we
define the four MAP levels of 99%, 95%, 90% and 80% of
the maximum MAP for applicable queries that can be achieved
over the different history ages. We perform linear regression
with backward elimination, using each of these percentages

separately as the response variables, and the demographic
information as explanatory variables. For all four response
variables, the elimination process removes all the explanatory
variables, failing to produce a regression model. This indicates
that variations in the demographic variables are not effective
predictors of the rate at which a model deteriorates.

In summary, this analysis allows us to answer RQ3:
RQ 3 Can we predict good values for history length and age
for a given software-system based on characteristics of its
change-history (such as the average size of transactions and
the number of developers)?
Good values for history length can be predicted. Indeed, a
team of developers can use the regression model in Table VI
to predict the amount of system’s history that should be
used. In contrast, no similar correlation exists for predicting
the deterioration of change impact analysis quality based on
history age. In an attempt to better predict age deterioration,
future work will consider additional demographic information
such as some measure of the development process.

VI. RELATED WORK

Software repository mining literature [11, 20, 21] frequently
alludes to the notion that learning from a too short, or an
overly long history harms the outcome, either because not
enough knowledge can be uncovered, or because outdated in-
formation introduces noise. However, except for some smaller
experiments by Zimmermann [11], the impact of these effects
has not been systematically investigated.

Similarly, authors in the field of association rule mining
have stated the need to investigate sensitivity to algorithm
parameters (e.g., transaction filter size used, choice of interest-
ingness measure) [27, 28, 29, 30], but we have not found work
that discusses sensitivity to the number of transactions used
for mining (i.e., our history length), or to aging of transactions.
Parameters in Mining Change Impact: In the context of
software change impact analysis, several studies remark on
the importance of discarding from the history large change
sets which are likely to contain unrelated files. For example,
Kagdi et al. [23], Zimmermann et al. [11] and Ying et al. [12]
propose to filter out transactions larger than 10, 30, and
100 items, respectively. However, none of this work reports
how the threshold was chosen nor does it discuss the impact
of different values on recommendation quality. In previous
work [24], we systematically explored the effect of filtering
size on the quality of change impact analysis, and found that
filtering transactions larger than eight items yields the best
result for similar systems as considered in this paper.
Characteristics of the Change History: Over the years,
several studies proposed strategies to group transactions in
the revision history of software projects [11, 13, 31]. The
reason for doing so is that a developer might accidentally
commit an incomplete transaction, and modify the remaining
files related to the same change in a subsequent transaction.
As a consequence, a single change set might be scattered
across several transactions in the change history. Nevertheless,
in modern version control systems, transactions are stashed in

the user local repository and finalized at a later stage, reducing
the risk of committing incomplete transactions.

In contrast, whether properties such as average commit size
and frequency affect the quality of software recommendations
is a relatively less studied subject. In this direction, German
carried out an empirical study on several open source projects,
finding that the revision history of most systems contains
mostly small commits [32]. Alali et al. also investigated the
total number of lines modified in the files, and the total number
of hunks with line changes [33]. Kolassa et al. performed a
similar study on commit frequency, reporting an average inter-
commit time around three days [34]. However, none of these
studies investigates how characteristics of the change history
affect the quality of change recommendations.
Characteristics of the Change Set: Targeted association
rule mining approaches drive the generation of rules by a
query supplied by the user [19]. In general, characteristics
of the query can effect the precision of recommendations.
For example, Rolfsnes et al. found a particular class of
queries, strongly related to query size, for which the most
common targeted association rule mining approaches cannot
generate recommendations [10]. In other work, Hassan and
Holt investigated the effectiveness of evolutionary coupling in
predicting change propagation effects resulting from source
code changes, but did not evaluate whether the size of trans-
actions in the history affects the quality of the predictions
generated [7].
Aged histories in evaluation: For the purpose of evaluating
change impact analysis or change recommendation techniques,
it is common practice to split the change history into training
and test sets. The training set can either be treated as a static
prediction model [12], or be continuously updated with respect
to the chosen transaction from the test set [11]. If treated
as a static model this means that the model will be aged
differently with respect to each transactions in the test set,
and as we have seen in RQ2 aging affects impact analysis
quality. Therefore, any study involving history splitting should
take aging into consideration. Since we have seen that aging
can only lead to deterioration of impact analysis quality,
we suggest evaluation setups where the prediction model is
updated for every transaction in the test set (i.e., an age of
zero).

VII. CONCLUDING REMARKS

This paper presents a systematic study of the effects of
history length and age on 19 different software systems.
Key findings include that as history length increases, the
MAP also increases, although this increase diminishes around
15 000 commits. Moreover, the applicability also increases
with increased history length, but seems to top out around
15 000 to 25 000 commits. We found that the impact of age
on MAP is very significant, as even very little aging yields a
strong, basically exponential decrease.

Finally, in addition to the study providing a better un-
derstanding of the impact of history length and age on the
quality of change impact analysis, we also derive a prediction

model for the length of the history that should be used with
a given system. This prediction model is a function of system
demographics, specifically the average commit size and the
number of files.

Looking forward, we did not find any evidence of the folk-
loric belief that large histories contain outdated information
that degrades change impact analysis quality. Thus, as part
of future work, we plan to investigate significantly larger
histories. For example, the complete development history of
the Linux kernel includes over 650 000 commits. Other possi-
bilities include studying the impact of aggregation [25] on the
recommendations and considering the impact of history length
and age on alternative algorithms [11, 12, 23] where we expect
the impact to be more dramatic because these algorithms are
more restricted in their use of the history. Finally, based on our
findings on the impact of history age, we plan to experiment
with alternative strategies for association rules generation that
take age into account, for instance by assigning higher weight
to more recent transactions.
Acknowledgement: This work is supported by the Re-
search Council of Norway through the EvolveIT project
(#221751/F20) and the Certus SFI (#203461/030). Dr. Binkley
is supported by NSF grant IIA-1360707 and a J. William
Fulbright award.

REFERENCES

[1] S. Bohner and R. Arnold. Software Change Impact Analysis.
CA, USA: IEEE, 1996.

[2] J. Law and G. Rothermel. “Whole Program Path-Based Dy-
namic Impact Analysis”. In: Int’l Conf. Softw. Engineering.
IEEE, 2003, pp. 308–318.

[3] X. Ren et al. “Chianti: a tool for change impact analysis of java
programs”. In: Conf. Object-oriented Programming, Systems,
Languages, and Applications. 2004, pp. 432–448.

[4] M.-A. Jashki, R. Zafarani, and E. Bagheri. “Towards a more ef-
ficient static software change impact analysis method”. In: Ws.
Program Analysis for Softw. Tools and Engineering (PASTE).
ACM, 2008, pp. 84–90.

[5] A. R. Yazdanshenas and L. Moonen. “Crossing the bound-
aries while analyzing heterogeneous component-based soft-
ware systems”. In: Int’l Conf. Softw. Maintenance. IEEE, 2011,
pp. 193–202.

[6] A. Podgurski and L. Clarke. “A formal model of program de-
pendences and its implications for software testing, debugging,
and maintenance”. In: IEEE TSE 16.9 (1990), pp. 965–979.

[7] A. Hassan and R. Holt. “Predicting change propagation in
software systems”. In: Int’l Conf. Softw. Maintenance. IEEE,
2004, pp. 284–293.

[8] G. Canfora and L. Cerulo. “Impact Analysis by Mining
Software and Change Request Repositories”. In: Int’l Softw.
Metrics Symp. IEEE, 2005, pp. 29–37.

[9] M. B. Zanjani, G. Swartzendruber, and H. Kagdi. “Impact
analysis of change requests on source code based on inter-
action and commit histories”. In: Int’l Working Conf. Mining
Softw. Repositories. 2014, pp. 162–171.

[10] T. Rolfsnes et al. “Generalizing the Analysis of Evolutionary
Coupling for Software Change Impact Analysis”. In: Int’l
Conf. Softw. Analysis, Evolution, and Reengineering. IEEE,
2016, pp. 201–212.

[11] T. Zimmermann et al. “Mining version histories to guide
software changes”. In: IEEE TSE 31.6 (2005), pp. 429–445.

[12] A. Ying et al. “Predicting source code changes by mining
change history”. In: IEEE TSE 30.9 (2004), pp. 574–586.

[13] H. Kagdi, S. Yusuf, and J. I. Maletic. “Mining sequences
of changed-files from version histories”. In: Int’l Ws. Mining
Softw. Repositories. ACM, 2006, pp. 47–53.

[14] R. Agrawal, T. Imielinski, and A. Swami. “Mining association
rules between sets of items in large databases”. In: Int’l Conf.
Management of Data. ACM, 1993, pp. 207–216.

[15] S. Eick et al. “Does code decay? Assessing the evidence from
change management data”. In: IEEE TSE 27.1 (2001), pp. 1–
12.

[16] M. Gethers et al. “An adaptive approach to impact analysis
from change requests to source code”. In: Int’l Conf. Auto-
mated Softw. Engineering. IEEE, 2011, pp. 540–543.

[17] R. Robbes, D. Pollet, and M. Lanza. “Logical Coupling Based
on Fine-Grained Change Information”. In: Working Conf.
Reverse Engineering. IEEE, 2008, pp. 42–46.

[18] H. Gall, K. Hajek, and M. Jazayeri. “Detection of logical
coupling based on product release history”. In: Int’l Conf.
Softw. Maintenance. IEEE, 1998, pp. 190–198.

[19] R. Srikant, Q. Vu, and R. Agrawal. “Mining Association Rules
with Item Constraints”. In: Int’l Conf. Knowledge Discovery
and Data Mining (KDD). AASI, 1997, pp. 67–73.

[20] T. Graves et al. “Predicting fault incidence using software
change history”. In: IEEE TSE 26.7 (2000), pp. 653–661.

[21] A. E. Hassan. “The road ahead for Mining Software Repos-
itories”. In: Frontiers of Softw. Maintenance. IEEE, 2008,
pp. 48–57.

[22] A. Alali. “An Empirical Characterization of Commits in Soft-
ware Repositories”. Ms.c. Kent State University, 2008, p. 53.

[23] H. Kagdi, M. Gethers, and D. Poshyvanyk. “Integrating con-
ceptual and logical couplings for change impact analysis in
software”. In: Empirical Software Engineering 18.5 (2013),
pp. 933–969.

[24] L. Moonen et al. “Practical Guidelines for Change Recom-
mendation using Association Rule Mining”. In: Int’l Conf.
Automated Softw. Engineering. Singapore: IEEE, 2016.

[25] T. Rolfsnes et al. “Improving change recommendation using
aggregated association rules”. In: Int’l Conf. Mining Softw.
Repositories. ACM, 2016, pp. 73–84.

[26] R. (Baeza-Yates and B. Ribeiro-Neto. Modern information
retrieval. ACM, 1999, p. 513.

[27] Z. Zheng, R. Kohavi, and L. Mason. “Real world performance
of association rule algorithms”. In: Int’l Conf. Knowledge
discovery and data mining (KDD). ACM, 2001, pp. 401–406.

[28] W. Lin, S. A. Alvarez, and C. Ruiz. “No Title”. In: Data
Mining and Knowledge Discovery 6.1 (2002), pp. 83–105.

[29] N. Jiang and L. Gruenwald. “Research issues in data stream
association rule mining”. In: ACM SIGMOD Record 35.1
(2006), pp. 14–19.

[30] O. Maimon and L. Rokach. Data Mining and Knowledge
Discovery Handbook. Ed. by O. Maimon and L. Rokach.
Springer, 2010, p. 1383.

[31] F. Jaafar et al. “Detecting asynchrony and dephase change
patterns by mining software repositories”. In: Journal of
Software: Evolution and Process 26.1 (2014), pp. 77–106.

[32] D. M. German. “An empirical study of fine-grained soft-
ware modifications”. In: Empirical Software Engineering 11.3
(2006), pp. 369–393.

[33] A. Alali, H. Kagdi, and J. Maletic. “What’s a Typical Commit?
A Characterization of Open Source Software Repositories”. In:
Int’l Conf. Program Comprehension. IEEE, 2008, pp. 182–
191.

[34] C. Kolassa, D. Riehle, and M. A. Salim. “The empirical com-
mit frequency distribution of open source projects”. In: Int’l
Symp. Open Collaboration (WikiSym). ACM, 2013, pp. 1–8.

